scholarly journals Statistical Downscaling Forecasts for Winter Monsoon Precipitation in Malaysia Using Multimodel Output Variables

2010 ◽  
Vol 23 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Liew Juneng ◽  
Fredolin T. Tangang ◽  
Hongwen Kang ◽  
Woo-Jin Lee ◽  
Yap Kok Seng

Abstract This paper compares the skills of four different forecasting approaches in predicting the 1-month lead time of the Malaysian winter season precipitation. Two of the approaches are based on statistical downscaling techniques of multimodel ensembles (MME). The third one is the ensemble of raw GCM forecast without any downscaling, whereas the fourth approach, which provides a baseline comparison, is a purely statistical forecast based solely on the preceding sea surface temperature anomaly. The first multimodel statistical downscaling method was developed by the Asia-Pacific Economic Cooperation (APEC) Climate Center (APCC) team, whereas the second is based on the canonical correlation analysis (CCA) technique using the same predictor variables. For the multimodel downscaling ensemble, eight variables from seven operational GCMs are used as predictors with the hindcast forecast data spanning a period of 21 yr from 1983/84 to 2003/04. The raw GCM forecast ensemble tends to have higher skills than the baseline skills of the purely statistical forecast that relates the dominant modes of observed sea surface temperature variability to precipitation. However, the downscaled MME forecasts have higher skills than the raw GCM products. In particular, the model developed by APCC showed significant improvement over the peninsular Malaysia region. This is attributed to the model’s ability to capture regional and large-scale predictor signatures from which the additional skills originated. Overall, the results showed that the appropriate downscaling technique and ensemble of various GCM forecasts could result in some skill enhancement, particularly over peninsular Malaysia, where other models tend to have lower or no skills.

2019 ◽  
Vol 34 (6) ◽  
pp. 1965-1977 ◽  
Author(s):  
Shouwen Zhang ◽  
Hua Jiang ◽  
Hui Wang

Abstract Based on historical forecasts of four individual forecasting systems, we conducted multimodel ensembles (MME) to predict the sea surface temperature anomaly (SSTA) variability and assessed these methods from a deterministic and probabilistic point of view. To investigate the advantages and drawbacks of different deterministic MME methods, we used simple averaged MME with equal weighs (SCM) and the stepwise pattern projection method (SPPM). We measured the probabilistic forecast accuracy by Brier skill score (BSS) combined with its two components: reliability (Brel) and resolution (Bres). The results indicated that SCM showed a high predictability in the tropical Pacific Ocean, with a correlation exceeding 0.8 with a 6-month lead time. In general, the SCM outperformed the SPPM in the tropics, while the SPPM tend to show some positive effect on the correction when at long lead times. Corrections occurred for the spring predictability barrier of ENSO, in particular for improvements when the correlation was low or the RMSE was large using the SCM method. These qualitative results are not susceptible to the selection of the hindcast periods, it is as a rule rather by chance of these individual systems. Performance of our probabilistic MME was better than the Climate Forecast System version2 (CFSv2) forecasts in forecasting COLD, NEUTRAL, and WARM SSTA categories for most regions, mainly due to the contribution of Brel, indicating more adequate ensemble construction strategies of the MME system superior to the CFSv2.


2020 ◽  
Vol 12 (16) ◽  
pp. 2554
Author(s):  
Christopher J. Merchant ◽  
Owen Embury

Atmospheric desert-dust aerosol, primarily from north Africa, causes negative biases in remotely sensed climate data records of sea surface temperature (SST). Here, large-scale bias adjustments are deduced and applied to the v2 climate data record of SST from the European Space Agency Climate Change Initiative (CCI). Unlike SST from infrared sensors, SST measured in situ is not prone to desert-dust bias. An in-situ-based SST analysis is combined with column dust mass from the Modern-Era Retrospective analysis for Research and Applications, Version 2 to deduce a monthly, large-scale adjustment to CCI analysis SSTs. Having reduced the dust-related biases, a further correction for some periods of anomalous satellite calibration is also derived. The corrections will increase the usability of the v2 CCI SST record for oceanographic and climate applications, such as understanding the role of Arabian Sea SSTs in the Indian monsoon. The corrections will also pave the way for a v3 climate data record with improved error characteristics with respect to atmospheric dust aerosol.


2008 ◽  
Vol 65 (8) ◽  
pp. 1610-1622 ◽  
Author(s):  
Julie A. Thayer ◽  
Douglas F. Bertram ◽  
Scott A. Hatch ◽  
Mark J. Hipfner ◽  
Leslie Slater ◽  
...  

We tested the hypothesis of synchronous interannual changes in forage fish dynamics around the North Pacific Rim. To do this, we sampled forage fish communities using a seabird predator, the rhinoceros auklet ( Cerorhinca monocerata ), at six coastal study sites from Japan to California. We investigated whether take of forage fishes was related to local marine conditions as indexed by sea surface temperature (SST). SST was concordant across sites in the eastern Pacific, but inversely correlated between east and west. Forage fish communities consisted of anchovy ( Engraulis spp.), sandlance ( Ammodytes spp.), capelin ( Mallotus spp.), and juvenile rockfish ( Sebastes spp.), among others, and take of forage fish varied in response to interannual and possibly lower-frequency oceanographic variability. Take of primary forage species were significantly related to changes in SST only at the eastern sites. We found synchrony in interannual variation of primary forage fishes across several regions in the eastern Pacific, but no significant east–west correlations. Specifically in the Japan Sea, factors other than local SST or interannual variability may more strongly influence forage fishes. Predator diet sampling offers a fishery-independent, large-scale perspective on forage fish dynamics that may be difficult to obtain using conventional means of study.


2019 ◽  
Vol 15 (6) ◽  
pp. 1985-1998
Author(s):  
Anson Cheung ◽  
Baylor Fox-Kemper ◽  
Timothy Herbert

Abstract. Marine sediments have greatly improved our understanding of the climate system, but their interpretation often assumes that certain climate mechanisms operate consistently over all timescales of interest and that variability at one or a few sample sites is representative of an oceanographic province. In this study, we test these assumptions using modern observations in an idealized manner mimicking paleo-reconstruction to investigate whether sea surface temperature and productivity proxy records in the Southern California Current System can be used to reconstruct Ekman upwelling. The method uses extended empirical orthogonal function (EEOF) analysis of the covariation of alongshore wind stress, chlorophyll, and sea surface temperature as measured by satellites from 2002 to 2009. We find that EEOF1 does not reflect an Ekman upwelling pattern but instead much broader California Current processes. EEOF2 and 3 reflect upwelling patterns, but these patterns are timescale dependent and regional. Thus, the skill of using one site to reconstruct the large-scale dominant patterns is spatially dependent. Lastly, we show that using multiple sites and/or multiple variables generally improves field reconstruction. These results together suggest that caution is needed when attempting to extrapolate mechanisms that may be important on seasonal timescales (e.g., Ekman upwelling) to deeper time but also the advantage of having multiple proxy records.


Sign in / Sign up

Export Citation Format

Share Document