scholarly journals Detailed Aerosol Optical Depth Intercomparison between Brewer and Li-Cor 1800 Spectroradiometers and a Cimel Sun Photometer

2009 ◽  
Vol 26 (8) ◽  
pp. 1558-1571 ◽  
Author(s):  
V. E. Cachorro ◽  
A. Berjón ◽  
C. Toledano ◽  
S. Mogo ◽  
N. Prats ◽  
...  

Abstract Aerosol optical depth (AOD) using different instruments during three short and intensive campaigns carried out from 1999 to 2001 at El Arenosillo in Huelva, Spain, are presented and compared. The specific aim of this study is to determine the level of agreement between three different instruments running in operational conditions. This activity, however, is part of a broader objective to recover an extended data series of AOD in the UV range obtained from a Brewer spectroradiometer. This instrument may be used to obtain AOD at the same five UV wavelengths used during normal operation for ozone content determination. As part of the validation of the Brewer AOD data, a Cimel sun photometer and another spectroradiometer, a Li-Cor 1800, were used. A detailed comparison of these three instruments is carried out by means of near-simultaneous measurements, with particular emphasis on examining diurnal AOD variability. Absolute AOD uncertainties range from 0.02 for the Cimel to 0.08 for the Brewer, with intermediate values for the Li-Cor 1800. All data during the comparison are in reasonable agreement, when taking into account the different performance characteristics of each instrument. The comparison also demonstrates current deficiencies in the Brewer data and thus the difficulty to determine AOD values with low errors.

2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


2019 ◽  
Vol 124 (10) ◽  
pp. 5516-5538 ◽  
Author(s):  
Wei Wang ◽  
Feiyue Mao ◽  
Zengxin Pan ◽  
Wei Gong ◽  
Mayumi Yoshida ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 3099
Author(s):  
Jean-François Léon ◽  
Nadège Martiny ◽  
Sébastien Merlet

Due to a limited number of monitoring stations in Western Africa, the impact of mineral dust on PM10 surface concentrations is still poorly known. We propose a new method to retrieve PM10 dust surface concentrations from sun photometer aerosol optical depth (AOD) and CALIPSO/CALIOP Level 2 aerosol layer products. The method is based on a multi linear regression model that is trained using co-located PM10, AERONET and CALIOP observations at 3 different locations in the Sahel. In addition to the sun photometer AOD, the regression model uses the CALIOP-derived base and top altitude of the lowermost dust layer, its AOD, the columnar total and columnar dust AOD. Due to the low revisit period of the CALIPSO satellite, the monthly mean annual cycles of the parameters are used as predictor variables rather than instantaneous observations. The regression model improves the correlation coefficient between monthly mean PM10 and AOD from 0.15 (AERONET AOD only) to 0.75 (AERONET AOD and CALIOP parameters). The respective high and low PM10 concentration during the winter dry season and summer season are well produced. Days with surface PM10 above 100 μg/m3 are better identified when using the CALIOP parameters in the multi linear regression model. The number of true positives (actual and predicted concentrations above the threshold) is increased and leads to an improvement in the classification sensitivity (recall) by a factor 1.8. Our methodology can be extrapolated to the whole Sahel area provided that satellite derived AOD maps are used in order to create a new dataset on population exposure to dust events in this area.


2021 ◽  
Vol 21 (62) ◽  
pp. 201-219
Author(s):  
Ali Bayat ◽  
Ahmad Assar Enayati ◽  
Azimeh Toshani ◽  
◽  
◽  
...  

2021 ◽  
Author(s):  
Jonas Witthuhn ◽  
Anja Hünerbein ◽  
Florian Filipitsch ◽  
Stefan Wacker ◽  
Stefanie Meilinger ◽  
...  

Abstract. The clear-sky radiative effect of aerosol-radiation interactions is of relevance for our understanding of the climate system. The influence of aerosol on the surface energy budget is of high interest for the renewable energy sector. In this study, the radiative effect is investigated in particular with respect to seasonal and regional variations for the region of Germany and the year 2015 at the surface and top of atmosphere using two complementary approaches. First, an ensemble of clear-sky models which explicitly consider aerosols is utilized to retrieve the aerosol optical depth and the surface direct radiative effect of aerosols by means of a clear sky fitting technique. For this, short-wave broadband irradiance measurements in the absence of clouds are used as a basis. A clear sky detection algorithm is used to identify cloud free observations. Considered are measurements of the shortwave broadband global and diffuse horizontal irradiance with shaded and unshaded pyranometers at 25 stations across Germany within the observational network of the German Weather Service (DWD). Clear sky models used are MMAC, MRMv6.1, METSTAT, ESRA, Heliosat-1, CEM and the simplified Solis model. The definition of aerosol and atmospheric characteristics of the models are examined in detail for their suitability for this approach. Second, the radiative effect is estimated using explicit radiative transfer simulations with inputs on the meteorological state of the atmosphere, trace-gases and aerosol from CAMS reanalysis. The aerosol optical properties (aerosol optical depth, Ångström exponent, single scattering albedo and assymetrie parameter) are first evaluated with AERONET direct sun and inversion products. The largest inconsistency is found for the aerosol absorption, which is overestimated by about 0.03 or about 30 % by the CAMS reanalysis. Compared to the DWD observational network, the simulated global, direct and diffuse irradiances show reasonable agreement within the measurement uncertainty. The radiative kernel method is used to estimate the resulting uncertainty and bias of the simulated direct radiative effect. The uncertainty is estimated to −1.5 ± 7.7 and 0.6 ± 3.5 W m−2 at the surface and top of atmosphere, respectively, while the annual-mean biases at the surface, top of atmosphere and total atmosphere are −10.6, −6.5 and 4.1 W m−2, respectively. The retrieval of the aerosol radiative effect with the clear sky models shows a high level of agreement with the radiative transfer simulations, with an RMSE of 5.8 W m−2 and a correlation of 0.75. The annual mean of the REari at the surface for the 25 DWD stations shows a value of −12.8 ± 5 W m−2 as average over the clear sky models, compared to −11 W m−2 from the radiative transfer simulations. Since all models assume a fixed aerosol characterisation, the annual cycle of the aerosol radiation effect cannot be reproduced. Out of this set of clear sky models, the largest level of agreement is shown by the ESRA and MRMv6.1 models.


2012 ◽  
Vol 29 (6) ◽  
pp. 857-866 ◽  
Author(s):  
Wilawan Kumharn ◽  
John S. Rimmer ◽  
Andrew R. D. Smedley ◽  
Toh Ying Ying ◽  
Ann R. Webb

Abstract Aerosols play an important role in attenuating solar radiation reaching the earth's surface and are thus important inputs to climate models. Aerosol optical depth is routinely measured in the visible range but little data in the ultraviolet (UV) are available. In the UV range it can be determined from Langley plots of direct-sun measurements from the Brewer spectrophotometer (where conditions allow) and can also be determined as the residual once the ozone and sulfur dioxide have been accounted for in the extinction observed during a normal Brewer direct-sun measurement. By comparing aerosol optical depth derived from Brewer direct-sun data in both the United Kingdom and Malaysia, two very different locations, it is determined that while most of the existing global Brewer network could contribute to aerosol optical depth data, further analysis, such as calculation of the Ångström parameter, would be dependent on latitude and sky conditions.


Sign in / Sign up

Export Citation Format

Share Document