scholarly journals Calibrated Precipitation Forecasts for a Limited-Area Ensemble Forecast System Using Reforecasts

2010 ◽  
Vol 138 (1) ◽  
pp. 176-189 ◽  
Author(s):  
Felix Fundel ◽  
Andre Walser ◽  
Mark A. Liniger ◽  
Christoph Frei ◽  
Christof Appenzeller

Abstract The calibration of numerical weather forecasts using reforecasts has been shown to increase the skill of weather predictions. Here, the precipitation forecasts from the Consortium for Small Scale Modeling Limited Area Ensemble Prediction System (COSMO-LEPS) are improved using a 30-yr-long set of reforecasts. The probabilistic forecasts are calibrated on the exceedance of return periods, independently from available observations. Besides correcting for systematic model errors, the spatial and temporal variability in the amplitude of rare precipitation events is implicitly captured when issuing forecasts of return periods. These forecast products are especially useful for issuing warnings of upcoming events. A way to visualize those calibrated ensemble forecasts conveniently for end users and to present verification results of the return period–based forecasts for Switzerland is proposed. It is presented that, depending on the lead time and return period, calibrating COSMO-LEPS with reforecasts increases the precipitation forecast skill substantially (about 1 day in forecast lead time). The largest improvements are achieved during winter months. The reasonable choice of the length of the reforecast climatology is estimated for an efficient use of this computational expensive calibration method.

2019 ◽  
Vol 148 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Kevin Bachmann ◽  
Christian Keil ◽  
George C. Craig ◽  
Martin Weissmann ◽  
Christian A. Welzbacher

Abstract We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.


2007 ◽  
Vol 12 ◽  
pp. 5-18 ◽  
Author(s):  
S. Federico ◽  
E. Avolio ◽  
C. Bellecci ◽  
A. Lavagnini ◽  
R. L. Walko

Abstract. This study investigates the sensitivity of a moderate-intense storm that occurred over Calabria, southern Italy, to upper-tropospheric forcing from a Potential Vorticity (PV) perspective. A prominent mid-troposheric trough can be identified for this event, which occurred between 22–24 May 2002, and serves as the precursor agent for the moderate-intense precipitation recorded. The working hypothesis is that the uncertainty in the representation of the upper-level disturbance has a major impact on the precipitation forecast and we test the hypothesis in a two-step approach. First, we examine the degree of uncertainty by comparing five different scenarios in a Limited area model Ensemble Prediction System (LEPS) framework which utilizes the height of the dynamical tropopause as the discriminating variable. Pseudo water vapour images of different scenarios are compared to the corresponding METEOSAT 7 water vapour image at a specific time, antecedent to the rain occurrence over Calabria, in order to evaluate the reliability of the different precipitation scenarios simulated by the LEPS. Second, we examine the impact of upper tropospheric PV variations on precipitation by comparing model simulations with slightly different initial PV fields. Initial velocity and mass fields in each case are balanced with the chosen PV perturbation using a PV inversion technique. The results of this study support the working hypothesis.


2007 ◽  
Vol 10 ◽  
pp. 139-144 ◽  
Author(s):  
B. Ahrens ◽  
S. Jaun

Abstract. Spatial interpolation of precipitation data is uncertain. How important is this uncertainty and how can it be considered in evaluation of high-resolution probabilistic precipitation forecasts? These questions are discussed by experimental evaluation of the COSMO consortium's limited-area ensemble prediction system COSMO-LEPS. The applied performance measure is the often used Brier skill score (BSS). The observational references in the evaluation are (a) analyzed rain gauge data by ordinary Kriging and (b) ensembles of interpolated rain gauge data by stochastic simulation. This permits the consideration of either a deterministic reference (the event is observed or not with 100% certainty) or a probabilistic reference that makes allowance for uncertainties in spatial averaging. The evaluation experiments show that the evaluation uncertainties are substantial even for the large area (41 300 km2) of Switzerland with a mean rain gauge distance as good as 7 km: the one- to three-day precipitation forecasts have skill decreasing with forecast lead time but the one- and two-day forecast performances differ not significantly.


2021 ◽  
Author(s):  
Carlos Velasco-Forero ◽  
Jayaram Pudashine ◽  
Mark Curtis ◽  
Alan Seed

<div> <p>Short-term precipitation forecast plays a vital role for minimizing the adverse effects of heavy precipitation events such as flash flooding.  Radar rainfall nowcasting techniques based on statistical extrapolations are used to overcome current limitations of precipitation forecasts from numerical weather models, as they provide high spatial and temporal resolutions forecasts within minutes of the observation time. Among various algorithms, the Short-Term Ensemble Prediction System (STEPS) provides rainfall fields nowcasts in a probabilistic sense by accounting the uncertainty in the precipitation forecasts by means of ensembles, with spatial and temporal characteristic very similar to those in the observed radar rainfall fields. The Australian Bureau of Meteorology uses STEPS to generate ensembles of forecast rainfall ensembles in real-time from its extensive weather radar network. </p> </div><div> <p>In this study, results of a large probabilistic verification exercise to a new version of STEPS (hereafter named STEPS-3) are reported. An extensive dataset of more than 47000 individual 5-minute radar rainfall fields (the equivalent of more than 163 days of rain) from ten weather radars across Australia (covering tropical to mid-latitude regions) were used to generate (and verify) 96-member rainfall ensembles nowcasts with up to a 90-minute lead time. STEPS-3 was found to be more than 15-times faster in delivering results compared with previous version of STEPS and an open-source algorithm called pySTEPS. Interestingly, significant variations were observed in the quality of predictions and verification results from one radar to other, from one event to other, depending on the characteristics and location of the radar, nature of the rainfall event, accumulation threshold and lead time. For example, CRPS and RMSE of ensembles of 5-min rainfall forecasts for radars located in mid-latitude regions are better (lower) than those ones from radars located in tropical areas for all lead-times. Also, rainfall fields from S-band radars seem to produce rainfall forecasts able to successfully identify extreme rainfall events for lead times up to 10 minutes longer than those produced using C-band radar datasets for the same rain rate thresholds. Some details of the new STEPS-3 version, case studies and examples of the verification results will be presented. </p> </div>


2006 ◽  
Vol 7 ◽  
pp. 189-191 ◽  
Author(s):  
T. Diomede ◽  
C. Marsigli ◽  
F. Nerozzi ◽  
T. Paccagnella ◽  
A. Montani

Abstract. A probabilistic approach to flood prediction over the Reno river basin, a medium-sized catchment in Northern Italy, has been tested using two different meteorological ensemble systems. The future precipitation scenarios are provided either by an analogue-based technique (statistical approach) or by a limited-area ensemble prediction system (dynamical approach), then used as different inputs to a distributed rainfall-runoff model. The ensemble of possible future flows so generated allows to convey a quantification of uncertainty about the discharge forecast. The probabilistic discharge forecasts, based on the precipitation forecast provided by the two ensembles, are then compared to the deterministic one obtained by the rainfall-runoff model fed on precipitation input provided by a non-hydrostatic meteorological model, run at 7km of horizontal resolution. For this case study, the dynamical approach appears to be more feasible in providing useful discharge ensemble forecast than the statistical one, because the observed large spread among members obtained with the analogue method makes difficult to issue real-time flood warnings.


2008 ◽  
Vol 136 (9) ◽  
pp. 3323-3342 ◽  
Author(s):  
Čedo Branković ◽  
Blaženka Matjačić ◽  
Stjepan Ivatek-Šahdan ◽  
Roberto Buizza

Abstract Dynamical downscaling has been applied to global ensemble forecasts to assess its impact for four cases of severe weather (precipitation and wind) over various parts of Croatia. It was performed with the Croatian 12.2-km version of the Aire Limitée Adaptation Dynamique Développement International (ALADIN) limited-area model, nested in the ECMWF TL255 (approximately 80 km) global ensemble prediction system (EPS). The 3-hourly EPS output was used to force the ALADIN model over the central European/northern Mediterranean domain. Results indicate that the identical clustering algorithm may yield differing results when applied to either global or to downscaled ensembles. It is argued that this is linked to the fact that a downscaled, higher-resolution ensemble resolves more explicitly small-scale features, in particular those strongly influenced by orographic forcing. This result has important implications in limited-area ensemble prediction, since it implies that downscaling may affect the interpretation or relevance of the global ensemble forecasts; that is, it may not always be feasible to make a selection (or a subset) of global lower-resolution ensemble members that might be representative of all possible higher-resolution evolution scenarios.


2011 ◽  
Vol 15 (7) ◽  
pp. 2327-2347 ◽  
Author(s):  
N. Addor ◽  
S. Jaun ◽  
F. Fundel ◽  
M. Zappa

Abstract. The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This model chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that overall COSMO-LEPS-based hydrological forecasts outperforms their COSMO-7-based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts, and are used to generate high discharge scenarios. They highlight challenges for making decisions on the basis of hydrological predictions, and indicate the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment. No definitive conclusion on the model chain capacity to forecast flooding events endangering the city of Zurich could be drawn because of the under-sampling of extreme events. Further research on the form of the reforecasts needed to infer on floods associated to return periods of several decades, centuries, is encouraged.


2006 ◽  
Vol 7 ◽  
pp. 1-8 ◽  
Author(s):  
S. Federico ◽  
E. Avolio ◽  
C. Bellecci ◽  
M. Colacino

Abstract. This paper reports preliminary results of a Limited area model Ensemble Prediction System (LEPS), based on RAMS, for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time, in order to implement LEPS operational, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that forms the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12 km horizontal resolution. Hereafter this ensemble will be referred also as LEPS_12L30. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecast, LEPS_12L30 forecasts are compared to a lower resolution ensemble, based on RAMS that has 50 km horizontal resolution and 51 members, nested in each ECMWF-EPS member. Hereafter this ensemble will be also referred as LEPS_50L30. LEPS_12L30 and LEPS_50L30 results were compared subjectively for all case studies but, for brevity, results are reported for two "representative" cases only. Subjective analysis is based on ensemble-mean precipitation and probability maps. Moreover, a short summary of objective scores. Maps and scores are evaluated against reports of Calabria regional raingauges network. Results show better LEPS_12L30 performance compared to LEPS_50L30. This is obtained for all case studies selected and strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria, at least for set-ups and case studies selected in this work.


2012 ◽  
Vol 12 (8) ◽  
pp. 2631-2645 ◽  
Author(s):  
B. Vié ◽  
G. Molinié ◽  
O. Nuissier ◽  
B. Vincendon ◽  
V. Ducrocq ◽  
...  

Abstract. An assessment of the performance of different convection-permitting ensemble prediction systems (EPSs) is performed, with a focus on Heavy Precipitating Events (HPEs). The convective-scale EPS configuration includes perturbations of lateral boundary conditions (LBCs) by using a global ensemble to provide LBCs, initial conditions (ICs) through an ensemble data assimilation technique and perturbations of microphysical parameterisations to account for part of model errors. A probabilistic evaluation is conducted over an 18-day period. A clear improvement is found when uncertainties on LBCs and ICs are considered together, but the chosen microphysical perturbations have no significant impact on probabilistic scores. Innovative evaluation processes for three HPE case studies are implemented. First, maxima diagrams provide a multi-scale analysis of intense rainfall. Second, an hydrological evaluation is performed through the computation of discharge forecasts using hourly ensemble precipitation forecasts as an input. All ensembles behave similarly, but differences are found highlighting the impact of microphysical perturbations on HPEs forecasts, especially for cases involving complex small-scale processes.


2008 ◽  
Vol 8 (2) ◽  
pp. 281-291 ◽  
Author(s):  
S. Jaun ◽  
B. Ahrens ◽  
A. Walser ◽  
T. Ewen ◽  
C. Schär

Abstract. Appropriate precautions in the case of flood occurrence often require long lead times (several days) in hydrological forecasting. This in turn implies large uncertainties that are mainly inherited from the meteorological precipitation forecast. Here we present a case study of the extreme flood event of August 2005 in the Swiss part of the Rhine catchment (total area 34 550 km2). This event caused tremendous damage and was associated with precipitation amounts and flood peaks with return periods beyond 10 to 100 years. To deal with the underlying intrinsic predictability limitations, a probabilistic forecasting system is tested, which is based on a hydrological-meteorological ensemble prediction system. The meteorological component of the system is the operational limited-area COSMO-LEPS that downscales the ECMWF ensemble prediction system to a horizontal resolution of 10 km, while the hydrological component is based on the semi-distributed hydrological model PREVAH with a spatial resolution of 500 m. We document the setup of the coupled system and assess its performance for the flood event under consideration. We show that the probabilistic meteorological-hydrological ensemble prediction chain is quite effective and provides additional guidance for extreme event forecasting, in comparison to a purely deterministic forecasting system. For the case studied, it is also shown that most of the benefits of the probabilistic approach may be realized with a comparatively small ensemble size of 10 members.


Sign in / Sign up

Export Citation Format

Share Document