Interpreting Stationary Wave Nonlinearity in Barotropic Dynamics

2010 ◽  
Vol 67 (7) ◽  
pp. 2240-2250 ◽  
Author(s):  
Lei Wang ◽  
Paul J. Kushner

Abstract Stationary wave nonlinearity describes the self-interaction of stationary waves and is important in maintaining the zonally asymmetric atmospheric general circulation. However, the dynamics of stationary wave nonlinearity, which is often calculated explicitly in stationary wave models, is not well understood. Stationary wave nonlinearity is examined here in the simplified setting of the response to localized topographic forcing in quasigeostrophic barotropic dynamics in the presence and absence of transient eddies. It is shown that stationary wave nonlinearity accounts for most of the difference between the linear and full nonlinear response, particularly if the adjustment of the zonal-mean flow to the stationary waves is taken into account. The separate impact of transient eddy forcing is also quantified. Wave activity analysis shows that stationary wave nonlinearity in this setting is associated with Rossby wave critical layer reflection. A nonlinear stationary wave model, similar to those used in baroclinic stationary wave model studies, is also tested and is shown to capture the basic features of the full nonlinear stationary wave solution.

2020 ◽  
Vol 77 (5) ◽  
pp. 1513-1529
Author(s):  
Nicholas J. Lutsko

Abstract The nonacceleration theorem states that the torque exerted on the atmosphere by orography is exactly balanced by the convergence of momentum by the stationary waves that the orography excites. This balance is tested in simulations with a stationary wave model and with a dry, idealized general circulation model (GCM), in which large-scale orography is placed at the latitude of maximum surface wind speed. For the smallest mountain considered (maximum height H = 0.5 m), the nonacceleration balance is nearly met, but the damping in the stationary wave model induces an offset between the stationary eddy momentum flux (EMF) convergence and the mountain torque, leading to residual mean flow changes. A stationary nonlinearity appears for larger mountains (H ≥ 10 m), driven by preferential deflection of the flow around the poleward flank of the orography, and causes further breakdown of the nonacceleration balance. The nonlinearity grows as H is increased, and is stronger in the GCM than in the stationary wave model, likely due to interactions with transient eddies. The midlatitude jet shifts poleward for H ≤ 2 km and equatorward for larger mountains, reflecting changes in the transient EMFs, which push the jet poleward for smaller mountains and equatorward for larger mountains. The stationary EMFs consistently force the jet poleward. These results add to our understanding of how orography affects the atmosphere’s momentum budget, providing insight into how the nonacceleration theorem breaks down; the roles of stationary nonlinearities and transients; and how orography affects the strength and latitude of eddy-driven jets.


2021 ◽  
Author(s):  
Masaru Yamamoto ◽  
Takumi Hirose ◽  
Kohei Ikeda ◽  
Masaaki Takahashi

<p>General circulation and waves are investigated using a T63 Venus general circulation model (GCM) with solar and thermal radiative transfer in the presence of high-resolution surface topography. This model has been developed by Ikeda (2011) at the Atmosphere and Ocean Research Institute (AORI), the University of Tokyo, and was used in Yamamoto et al. (2019, 2021). In the wind and static stability structures similar to the observed ones, the waves are investigated. Around the cloud-heating maximum (~65 km), the simulated thermal tides accelerate an equatorial superrotational flow with a speed of ~90 m/s<sup></sup>with rates of 0.2–0.5 m/s/(Earth day) via both horizontal and vertical momentum fluxes at low latitudes. Over the high mountains at low latitudes, the vertical wind variance at the cloud top is produced by topographically-fixed, short-period eddies, indicating penetrative plumes and gravity waves. In the solar-fixed coordinate system, the variances (i.e., the activity of waves other than thermal tides) of flow are relatively higher on the night-side than on the dayside at the cloud top. The local-time variation of the vertical eddy momentum flux is produced by both thermal tides and solar-related, small-scale gravity waves. Around the cloud bottom, the 9-day super-rotation of the zonal mean flow has a weak equatorial maximum and the 7.5-day Kelvin-like wave has an equatorial jet-like wind of 60-70 m/s. Because we discussed the thermal tide and topographically stationary wave in Yamamoto et al. (2021), we focus on the short-period eddies in the presentation.</p>


2009 ◽  
Vol 39 (11) ◽  
pp. 2757-2778 ◽  
Author(s):  
Luigi Cavaleri

Abstract The paper analyzes the capability of the present wave models of properly reproducing the conditions during and at the peak of severe and extreme storms. After providing evidence that this is often not the case, the reasons for it are explored. First, the physics of waves considered in wave models is analyzed. Although much improved with respect to the past, the wind accuracy is still a relevant factor at the peak of the storms. Other factors such as wind variability and air density are considered. The classical theory of wave generation by J. W. Miles’s mechanism, with subsequent modifications, is deemed not sufficiently representative of extreme conditions. The presently used formulations for nonlinear energy transfer are found to lead to too wide distributions in frequency and direction, hence reducing the input by wind. Notwithstanding some recent improvements, the white-capping formulation still depends on parameters fitted to the bulk of the data. Hence, it is not obvious how they will perform in extreme conditions when the physics is likely to be different. Albeit at different levels in different models, the advection still implies the spreading of energy, hence a spatial smoothing of the peaks. The lack of proper knowledge of the ocean currents is found to substantially affect the identification of how much energy can—in some cases—be concentrated at a given time and location. The implementation of the available theories and know-how in the present wave models are often found inconsistent from model to model. It follows that in this case, it is not possible to exchange corresponding pieces of software between two models without substantially affecting the quality of the results. After analyzing various aspects of a wave model, the paper makes some general considerations. Because wave growth is the difference between processes (input and output) involving large amounts of energy, it is very sensitive to small modifications of one or more processes. Together with the strong, but effective, tuning present in a wave model, this makes the introduction of new physics more complicated. It is suggested that for long-term improvements, operational and experimental applications need to proceed along parallel routes, with the latter looking more to the physics without the necessity of an immediately improved overall performance. In view of the forthcoming increase of computer power, a sensitivity study is suggested to identify the most critical areas in a wave model to determine where to invest for further improvements. The limits on the description of the physics of the processes when using the spectral approach, particularly in extreme conditions, are considered. For further insights and as a way to validate the present theories in these conditions, the use is suggested of numerical experiments simulating in great detail the physical interaction between the lower atmosphere and the single waves.


2011 ◽  
Vol 68 (4) ◽  
pp. 904-917 ◽  
Author(s):  
Stefan Sobolowski ◽  
Gavin Gong ◽  
Mingfang Ting

Abstract Continental-scale snow cover represents a broad thermal forcing on monthly-to-intraseasonal time scales, with the potential to modify local and remote atmospheric circulation. A previous GCM study reported robust transient-eddy responses to prescribed anomalous North American (NA) snow cover. The same set of experiments also indicated a robust upper-level stationary wave response during spring, but the nature of this response was not investigated until now. Here, the authors diagnose a deep, snow-induced, tropospheric cooling over NA and hypothesize that this may represent a pathway linking snow to the stationary wave response. A nonlinear stationary wave model is shown to reproduce the GCM stationary wave response to snow more accurately than a linear model, and results confirm that diabatic cooling is the primary driver of the stationary wave response. In particular, the total nonlinear effects due to cooling, and its interactions with transient eddies and orography, are shown to be essential for faithful reproduction of the GCM response. The nonlinear model results confirm that direct effects due to transients and orography are modest. However, with interactions between forcings included, the total effects due to these terms make important contributions to the total response. Analysis of observed NA snow cover and stationary waves is qualitatively similar to the patterns generated by the GCM and linear/nonlinear stationary wave models, indicating that the snow-induced signal is not simply a modeling artifact. The diagnosis and description of a snow–stationary wave relationship adds to the understanding of stationary waves and their forcing mechanisms, and this relationship suggests that large-scale changes in the land surface state may exert considerable influence on the atmosphere over hemispheric scales and thereby contribute to climate variability.


2020 ◽  
Vol 33 (13) ◽  
pp. 5611-5633 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Ian White ◽  
Edwin P. Gerber ◽  
Martin Jucker ◽  
Moran Erez

AbstractAn intermediate-complexity moist general circulation model is used to investigate the forcing of stationary waves in the Northern Hemisphere boreal winter by land–sea contrast, horizontal heat fluxes in the ocean, and topography. The additivity of the response to these building blocks is investigated. In the Pacific sector, the stationary wave pattern is not simply the linear additive sum of the response to each forcing. In fact, over the northeast Pacific and western North America, the sum of the responses to each forcing is actually opposite to that when all three are imposed simultaneously due to nonlinear interactions among the forcings. The source of the nonlinearity is diagnosed using the zonally anomalous steady-state thermodynamic balance, and it is shown that the background-state temperature field set up by each forcing dictates the stationary wave response to the other forcings. As all three forcings considered here strongly impact the temperature field and its zonal gradients, the nonlinearity and nonadditivity in our experiments can be explained, but only in a diagnostic sense. This nonadditivity extends up to the stratosphere, and also to surface temperature, where the sum of the responses to each forcing differs from the response if all forcings are included simultaneously. Only over western Eurasia is additivity a reasonable (though not perfect) assumption; in this sector land–sea contrast is most important over Europe, while topography is most important over western Asia. In other regions, where nonadditivity is pronounced, the question of which forcing is most important is ill-posed.


2006 ◽  
Vol 63 (11) ◽  
pp. 2931-2947 ◽  
Author(s):  
Heiner Körnich ◽  
Gerhard Schmitz ◽  
Erich Becker

Abstract The influence of stationary waves on the maintenance of the tropospheric annular mode (AM) is examined in a simple global circulation model with perpetual January conditions. The presented model experiments vary in the configurations of stationary wave forcing by orography and land–sea heating contrasts. All simulations display an AM-like pattern in the lower troposphere. The zonal momentum budget shows that the feedback between eddies with periods less than 10 days and the zonal-mean zonal wind is generally the dominating process that maintains the AM. The kinetic energy of the high-frequency eddies depends on the stationary wave forcing, where orographic forcing reduces and thermal forcing enhances it. The AMs in the model experiments differ in the superposed anomalous stationary waves and in the strength of the zonally symmetric component. If only orographic stationary wave forcing is taken into account, the mountain torque decelerates the barotropic wind anomaly, and thus acts to weaken the AM. However, the combined forcing of orography and land–sea heating contrasts produces a feedback between the anomalous stationary waves and the AM that compensates for the mountain torque. The different behavior of the model experiments results from the fact that only the thermal forcing changes the character of the anomalous stationary waves from external Rossby waves for orographic forcing alone to vertically propagating waves that enable the feedback process through wave–mean flow interaction. Only with this feedback, which is shown to be due to linear zonal–eddy coupling, does the model display a strong AM with centers of action over the oceans. The main conclusions are that this process is necessary to simulate a realistic northern AM, and that it distinguishes the northern from the southern AM.


2020 ◽  
Vol 1 (2) ◽  
pp. 293-311
Author(s):  
Veeshan Narinesingh ◽  
James F. Booth ◽  
Spencer K. Clark ◽  
Yi Ming

Abstract. Many fundamental questions remain about the roles and effects of stationary forcing on atmospheric blocking. As such, this work utilizes an idealized moist general circulation model (GCM) to investigate atmospheric blocking in terms of dynamics, geographical location, and duration. The model is first configured as an aquaplanet, then orography is added in separate integrations. Block-centered composites of wave activity fluxes and height show that blocks in the aquaplanet undergo a realistic dynamical evolution when compared to reanalysis. Blocks in the aquaplanet are also found to have similar life cycles to blocks in model integrations with orography. These results affirm the usefulness of both zonally symmetric and asymmetric idealized model configurations for studying blocking. Adding orography to the model leads to an increase in blocking. This mirrors what is observed when comparing the Northern Hemisphere (NH) and Southern Hemisphere (SH), where the NH contains more orography and thus more blocking. As the prescribed mountain height increases, so do the magnitude and size of climatological stationary waves, resulting in more blocking overall. Increases in blocking, however, are not spatially uniform. Orography is found to induce regions of enhanced block frequency just upstream of mountains, near high pressure anomalies in the stationary waves, which is poleward of climatological minima in upper-level zonal wind, while block frequency minima and jet maxima occur eastward of the wave trough. This result matches what is observed near the Rocky Mountains. Finally, an analysis of block duration suggests blocks generated near stationary wave maxima last slightly longer than blocks that form far from or without orography. Overall, the results of this work help to explain some of the observed similarities and differences in blocking between the NH and SH and emphasize the importance of general circulation features in setting where blocks most frequently occur.


2007 ◽  
Vol 64 (7) ◽  
pp. 2309-2331 ◽  
Author(s):  
Edmund K. M. Chang ◽  
Pablo Zurita-Gotor

Abstract In this study, an idealized nonlinear model is used to investigate whether dry dynamical factors alone are sufficient for explaining the observed seasonal modulation of the Northern Hemisphere storm tracks during the cool season. By construction, the model does an excellent job simulating the seasonal evolution of the climatological stationary waves. Yet even under this realistic mean flow, the seasonal modulation in storm-track amplitude predicted by the model is deficient over both ocean basins. The model exhibits a stronger sensitivity to the mean flow baroclinicity than observed, producing too-large midwinter eddy amplitudes compared to fall and spring. This is the case not only over the Pacific, where the observed midwinter minimum is barely apparent in the model simulations, but also over the Atlantic, where the October/April eddy amplitudes are also too weak when the January amplitude is tuned to be about right. The nonlinear model generally produces stronger eddy amplitude with stronger baroclinicity, even in the presence of concomitant stronger deformation due to the enhanced stationary wave. The same was found to be the case in a simpler quasigeostrophic model, in which the eddy amplitude nearly always increases with baroclinicity, and deformation only limits the maximum eddy amplitude when the baroclinicity is unrealistically weak. Overall, these results suggest that it is unlikely that dry dynamical effects alone, such as deformation, can fully explain the observed Pacific midwinter minimum in eddy amplitude. It is argued that one should take into account the seasonal evolution of the impacts of diabatic heating on baroclinic wave development in order to fully explain the seasonal cycle of the storm tracks. A set of highly idealized experiments that attempts to represent some of the impacts of moist heating is presented in an appendix to suggest that deficiencies in the model-simulated seasonal cycle of both storm tracks may be corrected when these effects, together with observed seasonal changes in mean flow structure, are taken into account.


2021 ◽  
Author(s):  
Qiyun Ma ◽  
Christian L. E. Franzke

AbstractEuropean heat waves result from large-scale stationary waves and have major impacts on the economy and mortality. However, the dynamical processes leading to and maintaining heat waves are still not well understood. Here we use a nonlinear stationary wave model (NSWM) to examine the role played by anomalous stationary waves and how they are forced during heat waves. For our study, we use the Japanese Reanalysis (JRA-55) data for the period 1958 through 2017. We show that the NSWM can successfully reproduce the main features of the observed anomalous stationary waves in the upper troposphere. Our results indicate that the dynamics of heat waves are nonlinear, and transient momentum fluxes are the primary drivers of the observed anomalous stationary waves. The contribution from orographic forcing is moderate and mainly through nonlinear interactions with diabatic heating. Further decomposition of the transients indicates that the high-frequency transient vorticity fluxes make dominant contributions. Furthermore, our results reveal that the response to heating located in the tropical Indian Ocean and the west Pacific region is primarily responsible for maintaining the observed anomalous stationary waves linked to European heat waves. This is confirmed by exploring the relationship between heat waves and the Indian Ocean Dipole strength. The heating in the mid-latitude and tropical Atlantic region plays a secondary role. Our results suggest that European heat waves are potentially predictable by considering the nonlinear effects involved in anomalous stationary waves and the heating sources in the nearby and remote tropical region.


Author(s):  
R.H. White ◽  
J.M. Wallace ◽  
D.S. Battisti

AbstractThe impact of global orography on Northern Hemisphere wintertime climate is revisited using the Whole Atmosphere Community Climate Model, WACCM6. A suite of experiments explores the roles of both resolved orography, and the parameterized effects of unresolved orographic drag (hereafter parameterized orography), including gravity waves and boundary layer turbulence. Including orography reduces the extra-tropical tropospheric and stratospheric zonal mean zonal wind, , by up to 80%; this is substantially greater than previous estimates. Ultimately parameterized orography accounts for 60-80% of this reduction; however, away from the surface most of the forcing of by parameterized orography is accomplished by resolved planetary waves. We propose that a catalytic wave-mean-flow positive feedback in the stratosphere makes the stratospheric flow particularly sensitive to parameterized orography. Orography and land-sea contrast contribute approximately equally to the strength of the mid-latitude stationary waves in the free troposphere, although orography is the dominant cause of the strength of the Siberian high and Aleutian low at the surface, and of the position of the Icelandic low. We argue that precisely quantifying the role of orography on the observed stationary waves is an almost intractable problem, and in particular should not be approached with linear stationary wave models in which is prescribed. We show that orography has less impact on stationary waves, and therefore on , on a backwards rotating Earth. Lastly, we show that atmospheric meridional heat transport shows remarkable constancy across our simulations, despite vastly different climates and stationary wave strengths.


Sign in / Sign up

Export Citation Format

Share Document