Recurrent Supersynoptic Evolution of the Great Plains Low-Level Jet

2011 ◽  
Vol 24 (2) ◽  
pp. 575-582 ◽  
Author(s):  
Scott J. Weaver ◽  
Sumant Nigam

Abstract The evolution of supersynoptic (i.e., pentad) Great Plains low-level jet (GPLLJ) variability, its precipitation impacts, and large-scale circulation context are analyzed in the North American Regional Reanalysis (NARR)—a high-resolution precipitation-assimilating dataset—and the NCEP–NCAR reanalysis. The analysis strategy leans on the extended EOF technique, which targets both spatial and temporal recurrence of a variability episode. Pentad GPLLJ variability structures are found to be spatially similar to those in the monthly analysis. The temporal evolution of the supersynoptic GPLLJ-induced precipitation anomalies reveal interesting lead and lag relationships highlighted by GPLLJ variability-leading precipitation anomalies. Interestingly, similar temporal phasing of the GPLLJ and precipitation anomalies were operative during the 1993 (1988) floods (drought) over the Great Plains, indicating the importance of these submonthly GPLLJ variability modes in the instigation of extreme hydroclimatic episodes. The northward-shifted (dry) GPLLJ variability mode is linked to large-scale circulation variations emanating from remote regions that are modified by interaction with the Rocky Mountains, suggesting that the supersynoptic GPLLJ fluctuations may have their origin in orographic modulation of baroclinic development.

2008 ◽  
Vol 21 (7) ◽  
pp. 1532-1551 ◽  
Author(s):  
Scott J. Weaver ◽  
Sumant Nigam

Abstract Variability of the Great Plains low-level jet (GPLLJ) is analyzed from the perspective of larger-scale, lower-frequency influences and regional hydroclimate impacts as opposed to the usual analysis of its frequency, diurnal variability, and mesoscale structure. The circulation-centric core analysis is conducted with monthly data from the high spatiotemporal resolution, precipitation-assimilating North American Regional Reanalysis, and the 40-yr ECMWF Re-Analysis (ERA-40) (as necessary) to identify the recurrent patterns of GPLLJ variability and their large-scale circulation links. The links are first investigated from regressions of an index representing meridional wind speed in the climatological jet-core region; the core region itself is defined from analysis of seasonal and diurnal variability of the jet structure and moisture fluxes. The analysis reveals that GPLLJ variability is, indeed, linked to coherent, large-scale, upper-level height patterns over the Pacific and North Atlantic Oscillation (NAO) variability in the Atlantic. A Rossby wave source analysis shows the Pacific height pattern to be potentially linked to tropical diabatic heating anomalies in the west-central basin and in the eastern Pacific sector. EOF analysis of GPLLJ variability shows it to be composed of three modes that, together, account for ∼75% of the variance. The modes represent the strengthening/expansion of the jet core (38%), with a strong precipitation impact on the northern Great Plains, and linked to post-peak-phase ENSO variability; meridional shift of the GPLLJ (23%), with a Gulf states precipitation focus, and linked to pre-peak-phase ENSO variability; and in-place strengthening of the GPLLJ (12%), with dipolar influence on Great Plains and Gulf states precipitation, and linked to summer NAO variability.


2013 ◽  
Vol 28 (1) ◽  
pp. 175-193 ◽  
Author(s):  
Joseph B. Pollina ◽  
Brian A. Colle ◽  
Joseph J. Charney

Abstract This study presents a spatial and temporal climatology of major wildfire events, defined as >100 acres burned (>40.47 ha, where 1 ha = 2.47 acre), in the northeast United States from 1999 to 2009 and the meteorological conditions associated with these events. The northeast United States is divided into two regions: region 1 is centered over the higher terrain of the northeast United States and region 2 is primarily over the coastal plain. About 59% of all wildfire events in these two regions occur in April and May, with ~76% in region 1 and ~53% in region 2. There is large interannual variability in wildfire frequency, with some years having 4–5 times more fire events than other years. The synoptic flow patterns associated with northeast United States wildfires are classified using the North American Regional Reanalysis. The most common synoptic pattern for region 1 is a surface high pressure system centered over the northern Appalachians, which occurred in approximately 46% of all events. For region 2, the prehigh anticyclone type extending from southeast Canada and the Great Lakes to the northeast United States is the most common pattern, occurring in about 46% of all events. A trajectory analysis highlights the influence of large-scale subsidence and decreasing relative humidity during the events, with the prehigh pattern showing the strongest subsidence and downslope drying in the lee of the Appalachians.


2014 ◽  
Vol 53 (9) ◽  
pp. 2093-2113 ◽  
Author(s):  
Claudia K. Walters ◽  
Julie A. Winkler ◽  
Sara Husseini ◽  
Ryan Keeling ◽  
Jovanka Nikolic ◽  
...  

AbstractClimatological analyses of low-level jets (LLJs) can be negatively influenced by the coarse spatial and temporal resolution and frequent changes in observing and archiving protocols of rawinsonde observations (raobs). The introduction of reanalysis datasets, such as the North American Regional Reanalysis (NARR), provides new resources for climatological research with finer spatial and temporal resolution and potentially fewer inhomogeneities. To assess the compatibility of LLJ characteristics identified from NARR wind profiles with those obtained from raob profiles, LLJs were extracted using standard jet definitions from NARR and raobs at 12 locations in the central United States for four representative years that reflect different rawinsonde protocols. LLJ characteristics (e.g., between-station differences in relative frequency, diurnal fluctuations, and mean speed and elevation) are generally consistent, although absolute frequencies are smaller for NARR relative to raobs at most stations. LLJs are concurrently identified in the NARR and raob wind profiles on less than 60% of the observation times with LLJ activity. Variations are seen between analysis years and locations. Of particular note is the substantial increase in LLJ frequency seen in raobs since the introduction of the Radiosonde Replacement System, which has led to a greater discrepancy in jet frequency between the NARR and raob datasets. The analyses suggest that NARR is a viable additional resource for climatological analyses of LLJs. Many of the findings are likely applicable for other fine-resolution reanalysis datasets, although differences between reanalyses require that each be carefully evaluated before its use in climatological analyses of wind maxima.


2016 ◽  
Vol 31 (5) ◽  
pp. 1491-1510 ◽  
Author(s):  
Brian J. Squitieri ◽  
William A. Gallus

Abstract The classic Great Plains southerly low-level jet (LLJ) is a primary factor in sustaining nocturnal convection. This study compares convection-allowing WRF forecasts of LLJ events associated with MCSs in strongly and weakly forced synoptic environments. The depth of the LLJs and magnitude, altitude, and times of the LLJ peak wind were evaluated in observations and WRF forecasts for 31 cases as well as for case subsets of strongly and weakly forced synoptic regimes. LLJs in strongly forced regimes were stronger, deeper, and peaked at higher altitudes and at earlier times compared to weakly forced cases. Mean error MCS-centered composites of WRF forecasts versus RUC analyses were derived at MCS initiation time for the LLJ atmospheric water vapor mixing ratio, LLJ total wind magnitude, convergence, most unstable convective available potential energy (MUCAPE), and most unstable convective inhibition (MUCIN). In most configurations, simulated MCSs in strongly and weakly forced regimes initiated to the north and east of observations, generally in a region where LLJ moisture, MUCAPE, and MUCIN fields were forecast well, with larger errors outside this region. However, WSM6 simulations for strongly forced cases showed a southward displacement in MCS initiation, where a combination of ambient environmental factors and microphysics impacts may simultaneously play a role in the location of forecast MCS initiation. Strongly forced observed and simulated MCSs initiated west of the LLJ axis and moved eastward into the LLJ, while observed and simulated MCSs in weakly forced environments traversed the termini of the LLJ. A northward bias existed for simulated MCS initiation and LLJ termini for weakly forced regimes.


2020 ◽  
Author(s):  
D. Alex Burrows ◽  
Craig Ferguson ◽  
Shubhi Agrawal ◽  
Lance Bosart

<p>The United States (U.S.) Great Plains southerly low-level jet (GPLLJ) is a ubiquitous feature of the summertime climatological flow in the central U.S. contributing to a large percentage of mean and extreme summertime rainfall, the generation of vast quantities of U.S. renewable wind energy, and severe weather outbreaks.  Like other LLJs across the globe, the GPLLJ can be 1) vertically coupled to the large-scale cyclone-anticyclone flow pattern associated with an upper-level jet stream or 2) uncoupled to the large-scale flow but sustained in response to various local land-atmosphere coupling mechanisms.  Many studies have focused on the interactions between teleconnection patterns and associated GPLLJ variability, treating the GPLLJ as a singular phenomenon.  Here, we treat the GPLLJ as two phenomena, coupled and uncoupled to the upper-level flow, and explore the multiscale impacts of SST forced and internally generated modes of variability on the GPLLJ.  With mounting evidence for the low-frequency control on higher frequency GPLLJ variability, the current study analyzes the contribution of the Pacific/North America (PNA) pattern on sub-seasonal timescales and ENSO on interannual timescales to changes in the frequency distributions of both coupled and uncoupled GPLLJs.</p><p> </p><p>This analysis utilizes 1) the Coupled ERA 20th Century (CERA-20C; 1901-2010) reanalysis from ECMWF which provides a large sample of teleconnection conditions and their impacts on GPLLJ variability and 2) a recently developed automated technique to differentiate those GPLLJs that are coupled or uncoupled to the upper-level flow.  Many studies have already shown that two distinct synoptic regimes dominate GPLLJ variability, a western U.S. trough and a central U.S. ridge.  This leads to changes in the frequency ratio of coupled and uncoupled GPLLJ events and ultimately in the location and intensity of precipitation across the GP.  Recently, Burrows et al. (2019) showed that during the Dust Bowl period of 1932-1938, the central and northern GP experienced anomalously high (low) uncoupled (coupled) GPLLJ event frequencies that coincided with a multi-year dry period across the entire region.  Understanding the upscale and lower frequency forcing patterns that lead to these distinct synoptic regimes would lead to greater predictability and forecasting skill.  On sub-seasonal timescales, it is shown that the negative phase of the PNA, which is associated with a southerly displaced Pacific jet stream and a western U.S. trough, leads to increases in the frequency of GPLLJs that are coupled to the upper-level flow, increases in Gulf of Mexico moisture flux and a redistribution of GP precipitation.  On interannual timescales, the location of ENSO events, i.e., eastern or central Pacific, is explored to determine the relationship between tropical forced variability and upper-level coupling to the GPLLJ.  In line with recent studies, it is hypothesized that central Pacific ENSO events may lead to increases in coupled GPLLJ events and precipitation, particularly in the southern GP.</p>


2005 ◽  
Vol 6 (5) ◽  
pp. 710-728 ◽  
Author(s):  
Kingtse C. Mo ◽  
Muthuvel Chelliah ◽  
Marco L. Carrera ◽  
R. Wayne Higgins ◽  
Wesley Ebisuzaki

Abstract The large-scale atmospheric hydrologic cycle over the United States and Mexico derived from the 23-yr NCEP regional reanalysis (RR) was evaluated by comparing the RR products with satellite estimates, independent sounding data, and the operational Eta Model three-dimensional variational data assimilation (3DVAR) system (EDAS). In general, the winter atmospheric transport and precipitation are realistic. The climatology and interannual variability of the Pacific, subtropical jet streams, and low-tropospheric moisture transport are well captured. During the summer season, the basic features and the evolution of the North American monsoon (NAM) revealed by the RR compare favorably with observations. The RR also captures the out-of-phase relationship of precipitation as well as the moisture flux convergence between the central United States and the Southwest. The RR is able to capture the zonal easterly Caribbean low-level jet (CALLJ) and the meridional southerly Great Plains low-level jet (GPLLJ). Together, they transport copious moisture from the Caribbean to the Gulf of Mexico and from the Gulf of Mexico to the Great Plains, respectively. The RR systematically overestimates the meridional southerly Gulf of California low-level jet (GCLLJ). A comparison with observations suggests that the meridional winds from the RR are too strong, with the largest differences centered over the northern Gulf of California. The strongest winds over the Gulf in the RR extend above 700 hPa, while the operational EDAS and station soundings indicate that the GCLLJ is confined to the boundary layer.


2008 ◽  
Vol 136 (10) ◽  
pp. 3781-3795 ◽  
Author(s):  
Edward I. Tollerud ◽  
Fernando Caracena ◽  
Steven E. Koch ◽  
Brian D. Jamison ◽  
R. Michael Hardesty ◽  
...  

Previous studies of the low-level jet (LLJ) over the central Great Plains of the United States have been unable to determine the role that mesoscale and smaller circulations play in the transport of moisture. To address this issue, two aircraft missions during the International H2O Project (IHOP_2002) were designed to observe closely a well-developed LLJ over the Great Plains (primarily Oklahoma and Kansas) with multiple observation platforms. In addition to standard operational platforms (most important, radiosondes and profilers) to provide the large-scale setting, dropsondes released from the aircraft at 55-km intervals and a pair of onboard lidar instruments—High Resolution Doppler Lidar (HRDL) for wind and differential absorption lidar (DIAL) for moisture—observed the moisture transport in the LLJ at greater resolution. Using these observations, the authors describe the multiscalar structure of the LLJ and then focus attention on the bulk properties and effects of scales of motion by computing moisture fluxes through cross sections that bracket the LLJ. From these computations, the Reynolds averages within the cross sections can be computed. This allow an estimate to be made of the bulk effect of integrated estimates of the contribution of small-scale (mesoscale to convective scale) circulations to the overall transport. The performance of the Weather Research and Forecasting (WRF) Model in forecasting the intensity and evolution of the LLJ for this case is briefly examined.


2013 ◽  
Vol 26 (22) ◽  
pp. 8787-8801 ◽  
Author(s):  
Kerrie L. Geil ◽  
Yolande L. Serra ◽  
Xubin Zeng

Abstract Precipitation, geopotential height, and wind fields from 21 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are examined to determine how well this generation of general circulation models represents the North American monsoon system (NAMS). Results show no improvement since CMIP3 in the magnitude (root-mean-square error and bias) of the mean annual cycle of monthly precipitation over a core monsoon domain, but improvement in the phasing of the seasonal cycle in precipitation is notable. Monsoon onset is early for most models but is clearly visible in daily climatological precipitation, whereas monsoon retreat is highly variable and unclear in daily climatological precipitation. Models that best capture large-scale circulation patterns at a low level usually have realistic representations of the NAMS, but even the best models poorly represent monsoon retreat. Difficulty in reproducing monsoon retreat results from an inaccurate representation of gradients in low-level geopotential height across the larger region, which causes an unrealistic flux of low-level moisture from the tropics into the NAMS region that extends well into the postmonsoon season. Composites of the models with the best and worst representations of the NAMS indicate that adequate representation of the monsoon during the early to midseason can be achieved even with a large-scale circulation pattern bias, as long as the bias is spatially consistent over the larger region influencing monsoon development; in other words, as with monsoon retreat, it is the inaccuracy of the spatial gradients in geopotential height across the larger region that prevents some models from realistic representation of the early and midseason monsoon system.


2021 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Patricia de Zea Bermudez ◽  
Iago Algarra ◽  
Luis Gimeno

Abstract The Great Plains Low-Level Jet system consists of very strong winds in the lower troposphere that transport a huge amount of moisture from the Gulf of Mexico to the American Great Plains. This paper aims to study the extremes of the Transported Moisture (TM) from the GPLLJ source region to the jet domain; and, for low and high TM, to analyze the extremal dependence between the upper tail of the precipitation in the GPLLJ sink region and the lower tail of the tropospheric stability in that region (omega). The declustered extremes of TM were analyzed using Peaks Over Threshold (POT). A non-stationary Exponential model was fitted to the cluster maxima. Estimated return levels show that the extremes of TM are expected to decrease in the future. This is meteorologically congruent with the known displacement of the western edge of the North Atlantic Subtropical High, which controls atmospheric circulation in the North Atlantic, and to a higher scale with the change of phase from negative to positive of the Atlantic Multidecadal Oscillation. Bilogistic and Logistic models were fitted to the extremes of (-omega, precipitation) for low and high TM, respectively. The extremal dependence between "-omega" and precipitation proves to be stronger in the case of high TM. This confirms that dynamical instability represented by “-omega” is the most important parameter for achieving high values of precipitation once there is a mechanism that allows the continuous supply of large amounts of moisture, such as the derived from a low-level jet system.


2012 ◽  
Vol 13 (3) ◽  
pp. 856-876 ◽  
Author(s):  
Justin Sheffield ◽  
Ben Livneh ◽  
Eric F. Wood

Abstract The North American Regional Reanalysis (NARR) is a state-of-the-art land–atmosphere reanalysis product that provides improved representation of the terrestrial hydrologic cycle compared to previous global reanalyses, having the potential to provide an enhanced picture of hydrologic extremes such as floods and droughts and their driving mechanisms. This is partly because of the novel assimilation of observed precipitation, state-of-the-art land surface scheme, and higher spatial resolution. NARR is evaluated in terms of the terrestrial water budget and its depiction of drought at monthly to annual time scales against two offline land surface model [Noah v2.7.1 and Variable Infiltration Capacity (VIC)] simulations and observation-based runoff estimates over the continental United States for 1979–2003. An earlier version of the Noah model forms the land component of NARR and so the offline simulation provides an opportunity to diagnose NARR land surface variables independently of atmospheric feedbacks. The VIC model has been calibrated against measured streamflow and so provides a reasonable estimate of large-scale evapotranspiration. Despite similar precipitation, there are large differences in the partitioning of precipitation into evapotranspiration and runoff. Relative to VIC, NARR and Noah annual evapotranspiration is biased high by 28% and 24%, respectively, and the runoff ratios are 50% and 40% lower. This is confirmed by comparison with observation-based runoff estimates from 1130 small, relatively unmanaged basins across the continental United States. The overestimation of evapotranspiration by NARR is largely attributed to the evapotranspiration component of the Noah model, whereas other factors such as atmospheric forcings or biases induced by precipitation assimilation into NARR play only a minor role. A combination of differences in the parameterization of evapotranspiration and in particular low stomatal resistance values in NARR, the seasonality of vegetation characteristics, the near-surface radiation and meteorology, and the representation of soil moisture dynamics, including high infiltration rates and the relative coupling of soil moisture with baseflow in NARR, are responsible for the differences in the water budgets. Large-scale drought as quantified by soil moisture percentiles covaries closely over the continental United States between the three datasets, despite large differences in the seasonal water budgets. However, there are large regional differences, especially in the eastern United States where the VIC model shows higher variability in drought dynamics. This is mostly due to increased frequency of completely dry conditions in NARR that result from differences in soil depth, higher evapotranspiration, early snowmelt, and early peak runoff. In the western United States, differences in the precipitation forcing contribute to large discrepancies between NARR and Noah/VIC simulations in the representation of the early 2000s drought.


Sign in / Sign up

Export Citation Format

Share Document