The Boundary Layer Response to Recent Arctic Sea Ice Loss and Implications for High-Latitude Climate Feedbacks

2011 ◽  
Vol 24 (2) ◽  
pp. 428-447 ◽  
Author(s):  
J. E. Kay ◽  
K. Raeder ◽  
A. Gettelman ◽  
J. Anderson

Abstract This study documents and evaluates the boundary layer and energy budget response to record low 2007 sea ice extents in the Community Atmosphere Model version 4 (CAM4) using 1-day observationally constrained forecasts and 10-yr runs with a freely evolving atmosphere. While near-surface temperature and humidity are minimally affected by sea ice loss in July 2007 forecasts, near-surface stability decreases and atmospheric humidity increases aloft over newly open water in September 2007 forecasts. Ubiquitous low cloud increases over the newly ice-free Arctic Ocean are found in both the July 2007 and the September 2007 forecasts. In response to the 2007 sea ice loss, net surface [top of the atmosphere (TOA)] energy budgets change by +19.4 W m−2 (+21.0 W m−2) and −17.9 W m−2 (+1.4 W m−2) in the July 2007 and September 2007 forecasts, respectively. While many aspects of the forecasted response to sea ice loss are consistent with physical expectations and available observations, CAM4’s ubiquitous July 2007 cloud increases over newly open water are not. The unrealistic cloud response results from the global application of parameterization designed to diagnose stratus clouds based on lower-tropospheric stability (CLDST). In the Arctic, the well-mixed boundary layer assumption implicit in CLDST is violated. Requiring a well-mixed boundary layer to diagnose stratus clouds improves the CAM4 cloud response to sea ice loss and increases July 2007 surface (TOA) energy budgets over newly open water by +11 W m−2 (+14.9 W m−2). Of importance to high-latitude climate feedbacks, unrealistic stratus cloud compensation for sea ice loss occurs only when stable and dry atmospheric conditions exist. Therefore, coupled climate projections that use CAM4 will underpredict Arctic sea ice loss only when dry and stable summer conditions occur.

Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Shawn G. Gallaher

To better understand the response of the western Arctic upper ocean to late summer ice-ocean interactions, a range of surface, interior, and basal sea ice conditions were simulated in a 1-D turbulent boundary layer model. In-ice and under-ice autonomous observations from the 2014 Marginal Ice Zone Experiment provided a complete characterization of the late melt-season sea ice and were used to set initial conditions, update boundary conditions, and conduct model validation studies. Results show that underestimates of open water and melt pond fraction at the sea ice surface had the largest influence on ocean-to-ice turbulent heat fluxes reducing basal melt rates by as much as 32%. This substantial reduction in latent heat loss was attributed to underestimates of open water areas and the exclusion of melt ponds by low-resolution synthetic aperture radar imagery. However, the greatest overall effect on the ice-ocean boundary layer came from mischaracterizations of basal roughness, with smooth ice scenarios resulting in 7 m of summer halocline shoaling and preservation of the near-surface temperature maximum. Rough ice conditions showed a 23% deepening of the mixed layer and erosion of heat storage above 40 m. Adjustments of conductive heat fluxes had little effect on the near-interface heat budget due to small internal thermal gradients within the late summer sea ice. Results from the 1-D boundary layer simulations highlight the most influential components of sea ice structure during late summer conditions and provide the magnitude of errors expected when ice conditions are mischaracterized.


2015 ◽  
Vol 28 (6) ◽  
pp. 2154-2167 ◽  
Author(s):  
Judith Perlwitz ◽  
Martin Hoerling ◽  
Randall Dole

Abstract Arctic temperatures have risen dramatically relative to those of lower latitudes in recent decades, with a common supposition being that sea ice declines are primarily responsible for amplified Arctic tropospheric warming. This conjecture is central to a hypothesis in which Arctic sea ice loss forms the beginning link of a causal chain that includes weaker westerlies in midlatitudes, more persistent and amplified midlatitude waves, and more extreme weather. Through model experimentation, the first step in this chain is examined by quantifying contributions of various physical factors to October–December (OND) mean Arctic tropospheric warming since 1979. The results indicate that the main factors responsible for Arctic tropospheric warming are recent decadal fluctuations and long-term changes in sea surface temperatures (SSTs), both located outside the Arctic. Arctic sea ice decline is the largest contributor to near-surface Arctic temperature increases, but it accounts for only about 20% of the magnitude of 1000–500-hPa warming. These findings thus disconfirm the hypothesis that deep tropospheric warming in the Arctic during OND has resulted substantially from sea ice loss. Contributions of the same factors to recent midlatitude climate trends are then examined. It is found that pronounced circulation changes over the North Atlantic and North Pacific result mainly from recent decadal ocean fluctuations and internal atmospheric variability, while the effects of sea ice declines are very small. Therefore, a hypothesized causal chain of hemisphere-wide connections originating from Arctic sea ice loss is not supported.


2021 ◽  
Author(s):  
Hannah Bailey ◽  
Alun Hubbard ◽  
Eric S. Klein ◽  
Kaisa-Riikka Mustonen ◽  
Pete D. Akers ◽  
...  

2021 ◽  
Author(s):  
Doug Smith ◽  

<p>The possibility that Arctic sea ice loss could weaken mid-latitude westerlies and promote more severe cold winters has sparked more than a decade of scientific debate, with support from observations but inconclusive modelling evidence. Here we analyse a large multi-model ensemble of coordinated experiments from the Polar Amplification Model Intercomparison Project and find that the modelled response is proportional to the simulated eddy momentum feedback, and that this is underestimated in all models. Hence, we derive an observationally constrained model response showing a modest weakening of mid-latitude tropospheric and stratospheric winds, an equatorward shift of the Atlantic and Pacific storm tracks, and a negative North Atlantic Oscillation. Although our constrained response is consistent with observed relationships which have weakened recently, we caution that emergent constraints may only provide a lower bound.</p>


2015 ◽  
Vol 15 (14) ◽  
pp. 8147-8163 ◽  
Author(s):  
M. Schäfer ◽  
E. Bierwirth ◽  
A. Ehrlich ◽  
E. Jäkel ◽  
M. Wendisch

Abstract. Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength). The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0–200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI) in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500–1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field). The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500–1000 m cloud altitude), which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30 % in retrievals of τ and effective radius reff, respectively. With the help of Δ L, an estimate of the distance to the ice edge is given, where the retrieval uncertainties due to 3-D radiative effects are negligible.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyo-Seok Park ◽  
Seong-Joong Kim ◽  
Kyong-Hwan Seo ◽  
Andrew L. Stewart ◽  
Seo-Yeon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document