scholarly journals Multisensor Precipitation Reanalysis

2010 ◽  
Vol 11 (3) ◽  
pp. 666-682 ◽  
Author(s):  
Brian R. Nelson ◽  
D-J. Seo ◽  
Dongsoo Kim

Abstract Temporally consistent high-quality, high-resolution multisensor precipitation reanalysis (MPR) products are needed for a wide range of quantitative climatological and hydroclimatological applications. Therefore, the authors have reengineered the multisensor precipitation estimator (MPE) algorithms of the NWS into the MPR package. Owing to the retrospective nature of the analysis, MPR allows for the utilization of additional rain gauge data, more rigorous automatic quality control, and post factum correction of radar quantitative precipitation estimation (QPE) and optimization of key parameters in multisensor estimation. To evaluate and demonstrate the value of MPR, the authors designed and carried out a set of cross-validation experiments in the pilot domain of North Carolina and South Carolina. The rain gauge data are from the reprocessed Hydrometeorological Automated Data System (HADS) and the daily Cooperative Observer Program (COOP). The radar QPE data are the operationally produced Weather Surveillance Radar-1988 Doppler digital precipitation array (DPA) products. To screen out bad rain gauge data, quality control steps were taken that use rain gauge and radar data. The resulting MPR products are compared with the stage IV product on a daily scale at the withheld COOP gauge locations. This paper describes the data, the MPR procedure, and the validation experiments, and it summarizes the findings.

2009 ◽  
Vol 24 (5) ◽  
pp. 1334-1344 ◽  
Author(s):  
Steven V. Vasiloff ◽  
Kenneth W. Howard ◽  
Jian Zhang

Abstract The principal source of information for operational flash flood monitoring and warning issuance is weather radar–based quantitative estimates of precipitation. Rain gauges are considered truth for the purposes of validating and calibrating real-time radar-derived precipitation data, both in a real-time sense and climatologically. This paper examines various uncertainties and challenges involved with using radar and rain gauge data in a severe local storm environment. A series of severe thunderstorm systems that occurred across northeastern Montana illustrates various problems with comparing radar precipitation estimates and real-time gauge data, including extreme wind effects, hail, missing gauge data, and radar quality control. Ten radar–gauge time series pairs were analyzed with most found to be not useful for real-time radar calibration. These issues must be carefully considered within the context of ongoing efforts to develop robust real-time tools for evaluating radar–gauge uncertainties. Recommendations are made for radar and gauge data quality control efforts that would benefit the operational use of gauge data.


1999 ◽  
Vol 35 (8) ◽  
pp. 2487-2503 ◽  
Author(s):  
Matthias Steiner ◽  
James A. Smith ◽  
Stephen J. Burges ◽  
Carlos V. Alonso ◽  
Robert W. Darden

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 533
Author(s):  
Alejandra De Vera ◽  
Pablo Alfaro ◽  
Rafael Terra

Systems exposed to hydroclimatic variability, such as the integrated electric system in Uruguay, increasingly require real-time multiscale information to optimize management. Monitoring of the precipitation field is key to inform the future hydroelectric energy availability. We present an operational implementation of an algorithm that merges satellite precipitation estimates with rain gauge data, based on a 3-step technique: (i) Regression of station data on the satellite estimate using a Generalized Linear Model; (ii) Interpolation of the regression residuals at station locations to the entire grid using Ordinary Kriging and (iii) Application of a rain/no rain mask. The operational implementation follows five steps: (i) Data download and daily accumulation; (ii) Data quality control; (iii) Merging technique; (iv) Hydrological modeling and (v) Electricity-system simulation. The hydrological modeling is carried with the GR4J rainfall-runoff model applied to 17 sub-catchments of the G. Terra basin with routing up to the reservoir. The implementation became operational at the Electricity Market Administration (ADME) on June 2020. The performance of the merged precipitation estimate was evaluated through comparison with an independent, dense and uniformly distributed rain gauge network using several relevant statistics. Further validation is presented comparing the simulated inflow to the estimate derived from a reservoir mass budget. Results confirm that the estimation that incorporates the satellite information in addition to the surface observations has a higher performance than the one that only uses rain gauge data, both in the rainfall statistical evaluation and hydrological simulation.


2019 ◽  
Vol 14 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Santosa Sandy Putra ◽  
Banata Wachid Ridwan ◽  
Kazuki Yamanoi ◽  
Makoto Shimomura ◽  
Sulistiyani ◽  
...  

An X-band radar was installed in 2014 at Merapi Museum, Yogyakarta, Indonesia, to monitor pyroclastic and rainfall events around Mt. Merapi. This research aims to perform a reliability analysis of the point extracted rainfall data from the aforementioned newly installed radar to improve the performance of the warning system in the future. The radar data was compared with the monitored rain gauge data from Balai Sabo and the IMERG satellite data from NASA and JAXA (The Integrated Multi-satellitE Retrievals for GPM), which had not been done before. All of the rainfall data was compared on an hourly interval. The comparisons were conducted based on 11 locations that correspond to the ground rainfall measurement stations. The locations of the rain gauges are spread around Mt. Merapi area. The point rainfall information was extracted from the radar data grid and the satellite data grid, which were compared with the rain gauge data. The data were then calibrated and adjusted up to the optimum state. Based on January 2017–March 2018 data, it was obtained that the optimum state has a NSF value of 0.41 and R2value of 0.56. As a result, it was determined that the radar can capture around 79% of the hourly rainfall occurrence around Mt. Merapi area during the chosen calibration period, in comparison with the rain gauge data. The radar was also able to capture nearby 40–50% of the heavy rainfall events that pose risks of lahar. In contrast, the radar data performance in detecting drizzling and light rain types were quite precise (55% of cases), although the satellite data could detect slightly better (60% of cases). These results indicate that the radar sensitivity in detecting the extreme rainfall events must receive higher priority in future developments, especially for applications to the existing Mt. Merapi lahar early warning systems.


Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 118 ◽  
Author(s):  
Kreklow ◽  
Tetzlaff ◽  
Kuhnt ◽  
Burkhard

Quantitative precipitation estimates (QPE) derived from weather radars provide spatially and temporally highly resolved rainfall data. However, they are also subject to systematic and random bias and various potential uncertainties and therefore require thorough quality checks before usage. The dataset described in this paper is a collection of precipitation statistics calculated from the hourly nationwide German RADKLIM and RADOLAN QPEs provided by the German Weather Service (Deutscher Wetterdienst (DWD)), which were combined with rainfall statistics derived from rain gauge data for intercomparison. Moreover, additional information on parameters that can potentially influence radar data quality, such as the height above sea level, information on wind energy plants and the distance to the next radar station, were included in the dataset. The resulting two point shapefiles are readable with all common GIS and constitutes a spatially highly resolved rainfall statistics geodataset for the period 2006 to 2017, which can be used for statistical rainfall analyses or for the derivation of model inputs. Furthermore, the publication of this data collection has the potential to benefit other users who intend to use precipitation data for any purpose in Germany and to identify the rainfall dataset that is best suited for their application by a straightforward comparison of three rainfall datasets without any tedious data processing and georeferencing.


2021 ◽  
Author(s):  
Francesco Marra ◽  
Moshe Armon ◽  
Efrat Morin

Abstract. The yearly exceedance probability of extreme precipitation of multiple durations is crucial for infrastructure design, risk management and policymaking. Local extremes emerge from the interaction of weather systems with local terrain features such as coastlines and orography, however multi-duration extremes do not follow exactly the patterns of cumulative precipitation and are still not well understood. High-resolution information from weather radars could help us better quantifying their patterns, but traditional extreme-value analyses based on radar records were found too inaccurate for quantifying the extreme intensities for impact studies. Here, we propose a novel methodology for extreme precipitation frequency analysis based on relatively short weather radar records, and we use it to investigate coastal and orographic effects on extreme precipitation of durations between 10 minutes and 24 hours. Combining 11 years of radar data with 10-minute rain gauge data in the southeastern Mediterranean, we obtain estimates of the 1 in 100 years intensities with ~22 % standard error, which is lower than those obtained using traditional approaches on rain gauge data. We identify three distinct regimes, which respond differently to coastal and orographic forcing: short durations (~10 minutes), related to peak convective rain rates; hourly durations (~1 hours), related to the yield of individual convective cells; and long durations (~6–24 hours), related to the accumulation of multiple convective cells and to stratiform processes. At short and hourly durations, extreme return levels peak at the coastline, while at longer durations they peak corresponding to the orographic barriers. The distributions tail heaviness is rather uniform above the sea and rapidly changes in presence of orography, with opposing directions at short (decreasing tail heaviness, with a peak at hourly durations) and long (increasing) durations. These distinct effects suggest that short-scale hazards such as urban pluvial floods could be more of concern for the coastal regions, while longer-scale hazards such as flash floods could be more relevant in mountainous areas.


2007 ◽  
Vol 10 ◽  
pp. 103-109 ◽  
Author(s):  
J. Brommundt ◽  
A. Bárdossy

Abstract. A multi-sites precipitation time series generator for engineering designs is currently being developed. The objective is to generate several time series' simultaneously with correct inter-station relationships. Therefore, a model to estimate correlation between stations for arbitrary points in a project area is needed, using rain gauge data as well as radar data. Two methods are applied to compare the spatial behaviour of precipitation in both the rain gauge data and the radar data. The first approach is to calculate precipitation intensities from radar reflectivity and use it as gauge data. The results show that the spatial structure in both data sets is similar, but cross correlation varies too much to use radar derived spatial correlation to describe gauge inter-station relationship. Thus, a second approach was tested to account for the differences in the spatial correlation associated to the distribution. Using the indicator time series, cross correlations for different quantiles were calculated from both the rain gauge and radar data. This approach shows that cross correlation varies depending on the chosen quantile. In the lower quantiles, the correlation is very similar in rain gauge and radar data, hence a transfer is possible. This insight is useful to derive cross correlations of rain gauges from radar images. Correlation data for rain gauges thus obtained contains all the information about heterogeneity and anisotropy of the spatial structure of rainfall, which is in the radar data.


Sign in / Sign up

Export Citation Format

Share Document