Characteristics of Precipitating Convective Systems in the Premonsoon Season of South Asia

2011 ◽  
Vol 12 (2) ◽  
pp. 157-180 ◽  
Author(s):  
Ulrike Romatschke ◽  
Robert A. Houze

Abstract Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data obtained over South Asia during eight premonsoon seasons (March–May) show that the precipitation is more convective in nature and more sensitive to synoptic forcing than during the monsoon. Over land areas, most rain falls from medium-sized systems (8500–35 000 km2 in horizontal area). In continental regions near the Himalayas, these medium-sized systems are favored by 500-mb trough conditions and are of two main types: 1) systems triggered by daytime heating over high terrain and growing to reach maximum size a few hours later and 2) systems triggered at night, as moist upstream flow is lifted over cold downslope flow from the mountains, and reaching maximum development upstream of the central and eastern Himalayas in the early morning hours. Systems triggered by similar mechanisms also account for the precipitation maxima in mountainous coastal regions, where the diurnal cycles are dominated by systems triggered in daytime over the higher coastal terrain. Medium-sized nocturnal systems are also found upstream of coastal mountain ranges. West-coastal precipitation systems over India and Myanmar are favored when low pressure systems occur over the upstream oceans, whereas Indian east-coastal systems occur when high pressure dominates over Bangladesh. Over the Bay of Bengal, the dominant systems are larger (>35 000 km2), and have large stratiform components. They occur in connection with depressions over the Bay and exhibit a weaker diurnal cycle.

2010 ◽  
Vol 23 (2) ◽  
pp. 419-439 ◽  
Author(s):  
Ulrike Romatschke ◽  
Socorro Medina ◽  
Robert A. Houze

Abstract Temporal and spatial variations of convection in South Asia are analyzed using eight years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data and NCEP reanalysis fields. To identify the most extreme convective features, three types of radar echo structures are defined: deep convective cores (contiguous 3D convective echo ≥40 dBZ extending ≥10 km in height) represent the most vertically penetrative convection, wide convective cores (contiguous convective ≥40 dBZ echo over a horizontal area ≥1000 km2) indicate wide regions of intense multicellular convection, and broad stratiform regions (stratiform echo contiguous over an area ≥50 000 km2) mark the mesoscale convective systems that have developed the most robust stratiform regions. The preferred locations of deep convective cores change markedly from India’s east coast in the premonsoon to the western Himalayan foothills in the monsoon. They form preferentially in the evening and over land as near-surface moist flow is capped by dry air aloft. Continental wide convective cores show a similar behavior with an additional nocturnal peak during the monsoon along the Himalayan foothills that is associated with convergence of downslope flow from the Himalayas with moist monsoonal winds at the foothills. The oceanic wide convective cores have a relatively weak diurnal cycle with a midday maximum. Convective systems exhibiting broad stratiform regions occur primarily in the rainiest season and regions—during the monsoon, over the ocean upstream of coastal mountains. Their diurnal patterns are similar to those of the wide convective cores.


2006 ◽  
Vol 134 (10) ◽  
pp. 2702-2721 ◽  
Author(s):  
Stephen W. Nesbitt ◽  
Robert Cifelli ◽  
Steven A. Rutledge

Abstract Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), TRMM Microwave Imager (TMI), and Visible and Infrared Scanner (VIRS) observations within the Precipitation Feature (PF) database have been analyzed to examine regional variability in rain area and maximum horizontal extent of rainfall features, and role of storm morphology on rainfall production (and thus modes where vertically integrated heating occurs). Particular attention is focused on the sampling geometry of the PR and the resulting impact on PF statistics across the global Tropics. It was found that 9% of rain features extend to the edge of the PR swath, with edge features contributing 42% of total rainfall. However, the area (maximum dimension) distribution of PR features is similar to the wider-swath TMI up until a truncation point of nearly 30 000 km2 (250 km), so a large portion of the feature size spectrum may be examined using the PR as with past ground-based studies. This study finds distinct differences in land and ocean storm morphology characteristics, which lead to important differences in rainfall modes regionally. A larger fraction of rainfall comes from more horizontally and vertically developed PFs over land than ocean due to the lack of shallow precipitation in both relative and absolute frequency of occurrence, with a trimodal distribution of rainfall contribution versus feature height observed over the ocean. Mesoscale convective systems (MCSs) are found to be responsible for up to 90% of rainfall in selected land regions. Tropicswide, MCSs are responsible for more than 50% of rainfall in almost all regions with average annual rainfall exceeding 3 mm day−1. Characteristic variability in the contribution of rainfall by feature type is shown over land and ocean, which suggests new approaches for improved convective parameterizations.


2003 ◽  
Vol 16 (10) ◽  
pp. 1456-1475 ◽  
Author(s):  
Stephen W. Nesbitt ◽  
Edward J. Zipser

Abstract The Tropical Rainfall Measuring Mission (TRMM) satellite measurements from the precipitation radar and TRMM microwave imager have been combined to yield a comprehensive 3-yr database of precipitation features (PFs) throughout the global Tropics (±36° latitude). The PFs retrieved using this algorithm (which number nearly six million Tropicswide) have been sorted by size and intensity ranging from small shallow features greater than 75 km2 in area to large mesoscale convective systems (MCSs) according to their radar and ice scattering characteristics. This study presents a comprehensive analysis of the diurnal cycle of the observed precipitation features' rainfall amount, precipitation feature frequency, rainfall intensity, convective–stratiform rainfall portioning, and remotely sensed convective intensity, sampled Tropicswide from space. The observations are sorted regionally to examine the stark differences in the diurnal cycle of rainfall and convective intensity over land and ocean areas. Over the oceans, the diurnal cycle of rainfall has small amplitude, with the maximum contribution to rainfall coming from MCSs in the early morning. This increased contribution is due to an increased number of MCSs in the nighttime hours, not increasing MCS areas or conditional rain rates, in agreement with previous works. Rainfall from sub-MCS features over the ocean has little appreciable diurnal cycle of rainfall or convective intensity. Land areas have a much larger rainfall cycle than over the ocean, with a marked minimum in the midmorning hours and a maximum in the afternoon, slowly decreasing through midnight. Non-MCS features have a significant peak in afternoon instantaneous conditional rain rates (the mean rain rate in raining pixels), and convective intensities, which differs from previous studies using rain rates derived from hourly rain gauges. This is attributed to enhancement by afternoon heating. MCSs over land have a convective intensity peak in the late afternoon, however all land regions have MCS rainfall peaks that occur in the late evening through midnight due to their longer life cycle. The diurnal cycle of overland MCS rainfall and convective intensity varies significantly among land regions, attributed to MCS sensitivity to the varying environmental conditions in which they occur.


2015 ◽  
Vol 72 (2) ◽  
pp. 623-640 ◽  
Author(s):  
Weixin Xu ◽  
Steven A. Rutledge

Abstract This study uses Dynamics of the Madden–Julian Oscillation (DYNAMO) shipborne [Research Vessel (R/V) Roger Revelle] radar and Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) datasets to investigate MJO-associated convective systems in specific organizational modes [mesoscale convective system (MCS) versus sub-MCS and linear versus nonlinear]. The Revelle radar sampled many “climatological” aspects of MJO convection as indicated by comparison with the long-term TRMM PR statistics, including areal-mean rainfall (6–7 mm day−1), convective intensity, rainfall contributions from different morphologies, and their variations with MJO phase. Nonlinear sub-MCSs were present 70% of the time but contributed just around 20% of the total rainfall. In contrast, linear and nonlinear MCSs were present 10% of the time but contributed 20% and 50%, respectively. These distributions vary with MJO phase, with the largest sub-MCS rainfall fraction in suppressed phases (phases 5–7) and maximum MCS precipitation in active phases (phases 2 and 3). Similarly, convective–stratiform rainfall fractions also varied significantly with MJO phase, with the highest convective fractions (70%–80%) in suppressed phases and the largest stratiform fraction (40%–50%) in active phases. However, there are also discrepancies between the Revelle radar and TRMM PR. Revelle radar data indicated a mean convective rain fraction of 70% compared to 55% for TRMM PR. This difference is mainly due to the reduced resolution of the TRMM PR compared to the ship radar. There are also notable differences in the rainfall contributions as a function of convective intensity between the Revelle radar and TRMM PR. In addition, TRMM PR composites indicate linear MCS rainfall increases after MJO onset and produce similar rainfall contributions to nonlinear MCSs; however, the Revelle radar statistics show the clear dominance of nonlinear MCS rainfall.


2011 ◽  
Vol 139 (8) ◽  
pp. 2399-2420 ◽  
Author(s):  
Kristen L. Rasmussen ◽  
Robert A. Houze

AbstractExtreme orogenic convective storms in southeastern South America are divided into three categories: storms with deep convective cores, storms with wide convective cores, and storms containing broad stratiform regions. Data from the Tropical Rainfall Measuring Mission satellite’s Precipitation Radar show that storms with wide convective cores are the most frequent, tending to originate near the Sierra de Cordoba range. Downslope flow at upper levels caps a nocturnally enhanced low-level jet, thus preventing convection from breaking out until the jet hits a steep slope of terrain, such as the Sierra de Cordoba Mountains or Andean foothills, so that the moist low-level air is lifted enough to release the instability and overcome the cap. This capping and triggering is similar to the way intense convection is released near the northwestern Himalayas. However, the intense storms with wide convective cores over southeastern South America are unlike their Himalayan counterparts in that they exhibit leading-line/trailing-stratiform organization and are influenced by baroclinic troughs more similar to storms east of the Rocky Mountains in the United States. Comparison of South American storms containing wide convective cores with storms in other parts of the world contributes to a global understanding of how major mountain ranges influence precipitating cloud systems.


2015 ◽  
Vol 15 (2) ◽  
pp. 57-64 ◽  
Author(s):  
Dibas Shrestha ◽  
Rashila Deshar

The Central Himalayan Region (Nepal Himalayas), comprised of two clear sub-parallel mountain ranges, is atypical location for studying the impact of rugged topography on spatio temporal variations of precipitation. The relationship between topography and diurnal cycles of rainfall have been investigated utilizing 13-year (1998–2010) high resolution (0.05° × 0.05°) Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data. An investigation of diurnal cycle of precipitation revealed an afternoon maximum during the pre-monsoon season (March–May) and midnight–early morning maximum during the summer monsoon season (June–August)over the southern slopes of the Himalayas. The summer monsoon exhibited a robust spatial variation of diurnal cycle of precipitation, during afternoon-evening time, primary rainfall peak appeared along the Lesser Himalayas (~2,000–2,200 m above mean sea level), while early-morning rain in contrast showed maximum concentration along the southern margin of the Himalayas (~500–700 m above MSL). An afternoon-evening rainfall peak was attributed to higher rain frequency, whereas early-morning rainfall peak was attributed to fewer but rather intense rainfall. It is suggested that, confluence between down slope and moist south easterly monsoon flow triggers convection near the foothills of the Himalayas during early morning period. The results further suggested the morning precipitation moves southward in the mature monsoon season.DOI: http://dx.doi.org/njst.v15i2.12116Nepal Journal of Science and Technology Vol. 15, No.2 (2014), 57-64


2019 ◽  
Vol 147 (10) ◽  
pp. 3741-3758 ◽  
Author(s):  
Jayesh Phadtare ◽  
G. S. Bhat

Abstract Synoptic-scale weather systems are often responsible for initiating mesoscale convective systems (MCSs). Here, we explore how synoptic forcing influences MCS characteristics, such as the maximum size, lifespan, cloud-top height, propagation speed, and triggering over the Indian region. We used 30-min interval infrared (IR) data of the Indian Kalpana-1 geostationary satellite. Cloud systems (CSs) in this data are identified and tracked using an object tracking algorithm. ERA-Interim 850-hPa vorticity is taken as a proxy for the synoptic forcing. The probability of CSs being larger, longer lived, and deeper is more in the presence of a synoptic-scale vorticity field; however, the influence of synoptic forcing is not evident on the westward propagation of CSs over land. There exists a linear relationship between maximum size, lifespan, and average cloud-top height of CSs regardless of the nature of synoptic forcing. Formation of CSs peaks around 1500 LST over land, which is independent of synoptic forcing. Over the north Bay of Bengal, CSs formation is predominantly nocturnal when synoptic forcing is strong, whereas, 0300 and 1200 LST are the preferred times when synoptic forcing is weak. Long-lived CSs are preferentially triggered in the western flank of the 850-hPa vorticity gradient field of a monsoon low pressure system. Once triggered, CSs propagate westward and ahead of the synoptic system and dissipate around midnight. Formation of new CSs on the next day occurs in the afternoon hours in the wake of previous day’s CSs and where vorticity gradient is also present. Formation and westward propagations of CSs on successive days move the synoptic envelope westward.


2013 ◽  
Vol 141 (5) ◽  
pp. 1708-1730 ◽  
Author(s):  
Maximiliano Viale ◽  
Robert A. Houze ◽  
Kristen L. Rasmussen

Abstract Upstream orographic enhancement of the rainfall from an extratropical cyclone approaching the Andes from the Pacific is investigated using the Weather Research and Forecasting (WRF) Model and the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. The main precipitation from the cyclone over central and coastal Chile fell when a narrow cold-frontal rainband (NCFR) interacted with a midlevel layer cloud deck formed from the orographically induced ascent of the prefrontal “atmospheric river” upstream of the Andes. Model output indicates that low-level convergence enhanced the NCFR where it met low-level blocked flow near the mountains. The NCFR had stronger updrafts with decreasing distance from the mountains, and the NCFR produced larger rain accumulations over the land region upstream of the Andes than over the open ocean. A sensitivity simulation with a 50% reduction in the Andes topography, for comparison to various west coast mountain ranges of North America, demonstrates that the extreme height of the real mountain barrier strengthens frontogenesis and upstream blocking, which produces stronger frontal lifting and a slower progression of the frontal system. The model and the satellite data suggest that the larger precipitation rates upstream of the Andes resulted from a seeder–feeder effect connected with the orographically invigorated NCFR updrafts, when they penetrated the orographically enhanced midlevel stratiform clouds forming as a result of the upstream orographic ascent of the atmospheric river. The supercooled water of the NCFR updrafts formed a feeder zone for the snow particles in the midlevel stratiform cloud just upstream of the Andes.


2014 ◽  
Vol 28 (1) ◽  
pp. 186-203 ◽  
Author(s):  
Chuntao Liu ◽  
Shoichi Shige ◽  
Yukari N. Takayabu ◽  
Edward Zipser

Abstract Latent heating (LH) from precipitation systems with different sizes, depths, and convective intensities is quantified with 15 years of LH retrievals from version 7 Precipitation Radar (PR) products of the Tropical Rainfall Measuring Mission (TRMM). Organized precipitation systems, such as mesoscale convective systems (MCSs; precipitation area > 2000 km2), contribute to 88% of the LH above 7 km over tropical land and 95% over tropical oceans. LH over tropical land is mainly from convective precipitation, and has one vertical mode with a peak from 4 to 7 km. There are two vertical modes of LH over tropical oceans. The shallow mode from about 1 to 4 km results from small, shallow, and weak precipitation systems, and partially from congestus clouds with radar echo top between 5 and 8 km. The deep mode from 5 to 9 km is mainly from stratiform precipitation in MCSs. MCSs of different regions and seasons have different LH vertical structure mainly due to the different proportion of stratiform precipitation. MCSs over ocean have a larger fraction of stratiform precipitation and a top-heavy LH structure. MCSs over land have a higher percentage of convective versus stratiform precipitation, which results in a relatively lower-level peak in LH compared to MCSs over the ocean. MCSs during monsoons have properties of LH in between those typical land and oceanic MCSs. Consistent with the diurnal variation of precipitation, tropical land has a stronger LH diurnal variation than tropical oceans with peak LH in the late afternoon. Over tropical oceans in the early morning, the shallow mode of LH peaks slightly earlier than the deep mode. There are almost no diurnal changes of MCSs LH over oceans. However, the small convective systems over land contribute a significant amount of LH at all vertical levels in the afternoon, when the contribution of MCSs is small.


2014 ◽  
Vol 27 (11) ◽  
pp. 4159-4188 ◽  
Author(s):  
Matthew A. Janiga ◽  
Chris D. Thorncroft

Abstract The geographic and diurnal variability of moist convection over tropical Africa and the east Atlantic is examined using the Tropical Rainfall Measuring Mission (TRMM) satellite and related to the variability of the convective environment. The stratiform rain fraction is highest within oceanic and continental regions just north of the equator. Both regions have high column relative humidity (CRH). In both monsoon and semiarid continental regions, stratiform rain fractions are significantly higher on days when the CRH is high, which suggests a relationship between these quantities. Large convective systems with high echo tops dominate the rainfall over the Sahel. The importance of CAPE and shear to the development of these types of systems is suggested by the fact these systems are especially common on days when the CAPE and shear are unusually high. Both deep convective and stratiform conditional rain rates increase with the size and echo-top height of convective systems. According to the TRMM Precipitation Radar (PR) near-surface rain rate, the highest deep convective and stratiform conditional rain rates occur off the coast of West Africa. However, comparisons between the PR near-surface rain rate and rain rates computed from Z–R relationships from the literature suggest that deep convective conditional rain rates over the Sahel are underestimated by the TRMM precipitation algorithm. Over the Sahel, small (large) convective systems produce most of the rainfall in the afternoon (early morning). This is associated with enhanced convective rainfall in the afternoon and stratiform in the early morning. The transition from small to large convective systems as convection propagates away from topographic features is also observed.


Sign in / Sign up

Export Citation Format

Share Document