scholarly journals Microphysical Structure of the Marine Boundary Layer under Strong Wind and Spray Formation as Seen from Simulations Using a 2D Explicit Microphysical Model. Part I: The Impact of Large Eddies

2011 ◽  
Vol 68 (10) ◽  
pp. 2366-2384 ◽  
Author(s):  
J. Shpund ◽  
M. Pinsky ◽  
A. Khain

Abstract The effects of large eddies (LE) on the marine boundary layer (MBL) microphysics and thermodynamics is investigated using a 2D Lagrangian model with spectral bin microphysics including effects of sea spray. The 600 m × 400 m MBL computational area is covered by 3750 adjacent interacting Lagrangian parcels moving in a turbulent-like flow. A turbulent-like velocity field is designed as a sum of a high number of harmonics with random time-dependent amplitudes and different wavelengths including large eddies with scales of several hundred meters. The model explicitly calculates diffusion growth/evaporation, collisions, and sedimentation of droplets forming both as sea spray droplets and background aerosols, as well as aerosol masses within droplets. The turbulent mixing between parcels is explicitly taken into account. Sea spray generation is determined by a source function depending on the background wind speed assumed in the simulations to be equal to 20 m s−1. The results of simulations obtained by taking into account the effects of LE are compared to those obtained under the assumption that the vertical transport of droplets and passive scalars is caused by small-scale turbulent diffusion. Small-scale turbulence diffusion taken alone leads to an unrealistic MBL structure. Nonlocal mixing of the MBL caused by LE leads to the formation of a well-mixed MBL with a vertical structure close to the observed one. LE lead to an increase in the sensible and latent heat surface fluxes by 50%–100% and transport a significant amount of large spray droplets upward. Microphysical processes lead to formation of spray-induced drizzling clouds with cloud base near the 200-m level.

2012 ◽  
Vol 69 (12) ◽  
pp. 3501-3514 ◽  
Author(s):  
J. Shpund ◽  
J. A. Zhang ◽  
M. Pinsky ◽  
A. Khain

Abstract The effect of sea spray on the thermodynamics and microphysical structure of the lowest 400-m layer under strong wind speeds is investigated using a 2D hybrid Lagrangian–Eulerian model with spectral bin microphysics. A large number of adjacent and interacting Lagrangian parcels move within a turbulent-like flow with the largest vortices being interpreted as large eddies (LE) with characteristic velocity of a few meters per second. It is shown that sea spray effect strongly depends on the environmental conditions, and largely on relative humidity (RH). When RH < ~90%, spray evaporates and contributes to moistening and cooling of the boundary layer, as well as to an increase in surface fluxes. When RH > ~90% the effects of spray on the BL thermodynamics substantially decrease. Spray leads to formation of drizzle by collisions with droplets formed on background aerosols. It is also shown that LE transport about 20% of large spray drops with radius exceeding 150 μm to the upper levels of the atmospheric mixed layer. It is hypothesized that this effect is of much importance with regard to the spray effect on the microphysics and dynamics of deep convective clouds typical of a hurricane eyewall.


2004 ◽  
Vol 61 (24) ◽  
pp. 3049-3064 ◽  
Author(s):  
Isaac Ginis ◽  
Alexander P. Khain ◽  
Elena Morozovsky

Abstract A model of the atmospheric boundary layer (BL) is presented that explicitly calculates a two-way interaction of the background flow and convective motions. The model is utilized for investigation of the formation of large eddies (roll vortices) and their effects on the structure of the marine boundary layer under conditions resembling those of tropical cyclones. It is shown that two main factors controlling the formation of large eddies are the magnitude of the background wind speed and air humidity, determining the cloud formation and latent heat release. When the wind speed is high enough, a strong vertical wind shear develops in the lower part of the BL, which triggers turbulent mixing and the formation of a mixed layer. As a result, the vertical profiles of velocity, potential temperature, and mixing ratio in the background flow are modified to allow for the development of large eddies via dynamic instability. Latent heat release in clouds was found to be the major energy source of large eddies. The cloud formation depends on the magnitude of air humidity. The most important manifestation of the effects of large eddies is a significant increase of the near-surface wind speed and evaporation from the sea surface. For strong wind conditions, the increase of the near-surface speed can exceed 10 m s−1 and evaporation from the sea surface can double. These results demonstrate an important role large eddies play in the formation of BL structure in high wind speeds. Inclusion of these effects in the BL parameterizations of tropical cyclone models may potentially lead to substantial improvements in the prediction of storm intensity.


2016 ◽  
Vol 16 (19) ◽  
pp. 12383-12396
Author(s):  
Tjarda J. Roberts ◽  
Marina Dütsch ◽  
Lars R. Hole ◽  
Paul B. Voss

Abstract. Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5–12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.


2014 ◽  
Vol 71 (6) ◽  
pp. 1914-1934 ◽  
Author(s):  
J. Shpund ◽  
J. A. Zhang ◽  
M. Pinsky ◽  
A. Khain

Abstract This paper completes a series of studies using a 2D hybrid Lagrangian–Eulerian model to investigate the effect of sea spray on the thermodynamics and microphysics of the hurricane mixed layer. The evolution of the mixed layer was simulated by mimicking the motion of an air volume (in a Lagrangian sense) toward a tropical cyclone eyewall along a background airflow. During the radial motion, sea surface temperature, pressure, background wind speed, sea spray production rate, and turbulence intensity were altered according to the available observations. Analysis of the interaction between the hurricane mixed layer and the upper layers in terms of entrainment heat and moisture fluxes gives a new insight into the role of sea spray in the thermodynamics and microphysics of the mixed layer. The evaporation of sea spray leads to an increase in the relative humidity by 10%–15% and to a decrease in temperature by about 1–1.5 K, as compared to cases where sea spray is excluded. Sea spray leads to formation of drizzling clouds with the cloud base at the height of about 250 m. Taking the sea spray effect into account provides a good agreement between the thermodynamics of a simulated mixed layer and the observation data. A parameterization of droplet mass and size distributions as functions of height and wind speed is proposed. The horizontally averaged size distributions are approximated by a sum of lognormal distributions. The moments of size distributions and other integral properties are parameterized as functions of 10-m wind speed by means of simple polynomial expressions.


2020 ◽  
Vol 20 (5) ◽  
pp. 2735-2754 ◽  
Author(s):  
Xabier Pedruzo-Bagazgoitia ◽  
Stephan R. de Roode ◽  
Bianca Adler ◽  
Karmen Babić ◽  
Cheikh Dione ◽  
...  

Abstract. The misrepresentation of the diurnal cycle of boundary layer clouds by large-scale models strongly impacts the modeled regional energy balance in southern West Africa. In particular, recognizing the processes involved in the maintenance and transition of the nighttime stratocumulus to diurnal shallow cumulus over land remains a challenge. This is due to the fact that over vegetation, surface fluxes exhibit a much larger magnitude and variability than on the more researched marine stratocumulus transitions. An improved understanding of the interactions between surface and atmosphere is thus necessary to improve its representation. To this end, the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) measurement campaign gathered a unique dataset of observations of the frequent stratocumulus-to-cumulus transition in southern West Africa. Inspired and constrained by these observations, we perform a series of numerical experiments using large eddy simulation. The experiments include interactive radiation and surface schemes where we explicitly resolve, quantify and describe the physical processes driving such transition. Focusing on the local processes, we quantify the transition in terms of dynamics, radiation, cloud properties, surface processes and the evolution of dynamically relevant layers such as subcloud layer, cloud layer and inversion layer. We further quantify the processes driving the stratocumulus thinning and the subsequent transition initiation by using a liquid water path budget. Finally, we study the impact of mean wind and wind shear at the cloud top through two additional numerical experiments. We find that the sequence starts with a nighttime well-mixed layer from the surface to the cloud top, in terms of temperature and humidity, and transitions to a prototypical convective boundary layer by the afternoon. We identify radiative cooling as the largest factor for the maintenance leading to a net thickening of the cloud layer of about 18 g m−2 h−1 before sunrise. Four hours after sunrise, the cloud layer decouples from the surface through a growing negative buoyancy flux at the cloud base. After sunrise, the increasing impact of entrainment leads to a progressive thinning of the cloud layer. While the effect of wind on the stratocumulus layer during nighttime is limited, after sunrise we find shear at the cloud top to have the largest impact: the local turbulence generated by shear enhances the boundary layer growth and entrainment aided by the increased surface fluxes. As a consequence, wind shear at the cloud top accelerates the breakup and transition by about 2 h. The quantification of the transition and its driving factors presented here sets the path for an improved representation by larger-scale models.


2019 ◽  
Author(s):  
Xabier Pedruzo-Bagazgoitia ◽  
Stephan R. de Roode ◽  
Bianca Adler ◽  
Karmen Babić ◽  
Cheikh Dione ◽  
...  

Abstract. The misrepresentation of the diurnal cycle of boundary-layer clouds by large scale models strongly impacts the modeled regional energy balance in southern West Africa. In particular, recognizing the processes involved in the maintenance and transition of the nighttime stratocumulus to diurnal shallow cumulus over land remains a challenge. This is due to the fact that over vegetation, surface fluxes exhibit a much larger magnitude and variability than on the more researched marine stratocumulus transitions. An improved understanding of the interactions between surface and atmosphere is thus necessary to improve its representation. To this end, the DACCIWA measurement campaign gathered a unique dataset of observations of the frequent stratocumulus to cumulus transition in southern West Africa. Inspired and constrained by these observations, we perform a series of numerical experiments using Large Eddy Simulation. The experiments include interactive radiation and surface schemes where we explicitly resolve, quantify and describe the physical processes driving such transition. Focusing on the local processes, we quantify the transition in terms of dynamics, radiation, cloud properties, surface processes and the evolution of dynamically relevant layers such as subcloud layer, cloud layer and inversion layer. We further quantify the processes driving the stratocumulus thinning and the subsequent transition initiation by using a liquid water path budget. Finally, we study the impact of mean wind and wind shear at cloud top through two additional numerical experiments. We find that the sequence starts with a nighttime well-mixed layer from surface to cloud top, in terms of temperature and humidity, and transitions to a prototypical convective boundary layer by the afternoon. We identify radiative cooling as the largest factor for the maintenance leading to a net thickening of the cloud layer of about 18 g m−2 h−1 before sunrise. Four hours after sunrise, the cloud layer decouples from the surface through a growing negative buoyancy flux at cloud base. After sunrise, the increasing impact of entrainment leads to a progressive thinning of the cloud layer. While the effect of wind on the stratocumulus layer during nighttime is limited, after sunrise we find shear at cloud top to have the largest impact: the local turbulence generated by shear enhances the boundary layer growth and entrainment aided by the increased surface fluxes. As a consequence wind shear at cloud top accelerates the breakup and transition by about 2 hours. The quantification of the transition and its driving factors presented here sets the path for an improved representation by larger scale models.


2020 ◽  
Vol 13 (5) ◽  
pp. 2363-2379 ◽  
Author(s):  
Katia Lamer ◽  
Pavlos Kollias ◽  
Alessandro Battaglia ◽  
Simon Preval

Abstract. Ground-based radar observations show that, over the eastern North Atlantic, 50 % of warm marine boundary layer (WMBL) hydrometeors occur below 1.2 km and have reflectivities of < −17 dBZ, thus making their detection from space susceptible to the extent of surface clutter and radar sensitivity. Surface clutter limits the ability of the CloudSat cloud profiling radar (CPR) to observe the true cloud base in ∼52 % of the cloudy columns it detects and true virga base in ∼80 %, meaning the CloudSat CPR often provides an incomplete view of even the clouds it does detect. Using forward simulations, we determine that a 250 m resolution radar would most accurately capture the boundaries of WMBL clouds and precipitation; that being said, because of sensitivity limitations, such a radar would suffer from cloud cover biases similar to those of the CloudSat CPR. Observations and forward simulations indicate that the CloudSat CPR fails to detect 29 %–43 % of the cloudy columns detected by ground-based sensors. Out of all configurations tested, the 7 dB more sensitive EarthCARE CPR performs best (only missing 9.0 % of cloudy columns) indicating that improving radar sensitivity is more important than decreasing the vertical extent of surface clutter for measuring cloud cover. However, because 50 % of WMBL systems are thinner than 400 m, they tend to be artificially stretched by long sensitive radar pulses, hence the EarthCARE CPR overestimation of cloud top height and hydrometeor fraction. Thus, it is recommended that the next generation of space-borne radars targeting WMBL science should operate interlaced pulse modes including both a highly sensitive long-pulse mode and a less sensitive but clutter-limiting short-pulse mode.


2009 ◽  
Vol 137 (3) ◽  
pp. 1083-1110 ◽  
Author(s):  
Andrew S. Ackerman ◽  
Margreet C. vanZanten ◽  
Bjorn Stevens ◽  
Verica Savic-Jovcic ◽  
Christopher S. Bretherton ◽  
...  

Abstract Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


2017 ◽  
Vol 74 (4) ◽  
pp. 1149-1168 ◽  
Author(s):  
Simon P. de Szoeke ◽  
Eric D. Skyllingstad ◽  
Paquita Zuidema ◽  
Arunchandra S. Chandra

Abstract Cold pools dominate the surface temperature variability observed over the central Indian Ocean (0°, 80°E) for 2 months of research cruise observations in the Dynamics of the Madden–Julian Oscillation (DYNAMO) experiment in October–December 2011. Cold pool fronts are identified by a rapid drop of temperature. Air in cold pools is slightly drier than the boundary layer (BL). Consistent with previous studies, cold pools attain wet-bulb potential temperatures representative of saturated downdrafts originating from the lower midtroposphere. Wind and surface fluxes increase, and rain is most likely within the ~20-min cold pool front. Greatest integrated water vapor and liquid follow the front. Temperature and velocity fluctuations shorter than 6 min achieve 90% of the surface latent and sensible heat flux in cold pools. The temperature of the cold pools recovers in about 20 min, chiefly by mixing at the top of the shallow cold wake layer, rather than by surface flux. Analysis of conserved variables shows mean BL air is composed of 51% air entrained from the BL top (800 m), 22% saturated downdrafts, and 27% air at equilibrium with the ocean surface. The number of cold pools, and their contribution to the BL heat and moisture, nearly doubles in the convectively active phase compared to the suppressed phase of the Madden–Julian oscillation.


2021 ◽  
Author(s):  
Bjorn Stevens ◽  
Ilya Serikov ◽  
Anna Lea Albright ◽  
Sandrine Bony ◽  
Geet George ◽  
...  

&lt;p&gt;Cloud free skies are rare in the trades. &amp;#160;We analyze conditions in which cloud-free conditions prevail. &amp;#160;For this purpose Raman water vapor measurements from the Barbados Cloud Observatory, complemented by ship-based measurements during EUREC4A are used to explore water vapor variability in the marine boundary layer. &amp;#160; We explore the consistency of the inferred cloud base height with estimates of temperature and water vapor from the lidar signal, and examine the co-variability of these quantities. &amp;#160;After having established the properties of these measurements, we seek to use them as well as others, to explain in what ways periods of cloud-free conditions are maintained, investigating the hypothesis that only when the wind stills is it simply sunny.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document