scholarly journals Airborne Retrievals of Snow Microwave Emissivity at AMSU Frequencies Using ARTS/SCEM-UA

2007 ◽  
Vol 46 (1) ◽  
pp. 23-35 ◽  
Author(s):  
R. Chawn Harlow

Abstract The remote sounding, by satellite, of atmospheric temperature and humidity is an important source of data for assimilation into operational weather forecasting routines. For retrievals of these variables near the surface, wavebands with low optical depths are monitored to allow penetration through the overlying atmosphere. Brightness temperatures in these relatively transparent bands are also sensitive to the land surface emissivity and effective temperature. Inadequate understanding of these land surface emissivities is a major issue when assimilating Advanced Microwave Sounding Unit data for the land-covered portion of the globe. One approach for estimating the emissivity of snow-covered surfaces is an empirical model derived from satellite-based and land-based retrievals of emissivity for a variety of snow types. The Met Office’s Hercules C-130 aircraft flew over snow-covered Arctic terrain of northern Finland during the Polar Experiment (POLEX) of March 2001. On these flights, microwave radiometers provided microwave brightness temperatures at 23.8, 50.3, 89.0, 157, and 183 GHz. The work presented here uses these data along with a robust multiparameter optimization routine [Shuffled Complex Evolution Metropolis (SCEM-UA)] coupled to the Atmospheric Radiative Transfer Simulator (ARTS) to retrieve emissivities at the measured frequencies. These results are then used to validate an empirical model. This latter model predicts 23.8–157-GHz emissivities with an RMSE of less than 0.02 and bias of less than 0.01 when compared with data at an incidence angle of 40°. Nonmonotonic behavior in the emissivity spectrum for this campaign, reported in earlier work, is confirmed by the retrievals presented here.

2014 ◽  
Vol 31 (4) ◽  
pp. 808-825 ◽  
Author(s):  
Wenhui Wang ◽  
Cheng-Zhi Zou

Abstract The Advanced Microwave Sounding Unit-A (AMSU-A, 1998–present) not only continues but surpasses the Microwave Sounding Unit’s (MSU, 1978–2006) capability in atmospheric temperature observation. It provides valuable satellite measurements for higher vertical resolution and long-term climate change research and trend monitoring. This study presented methodologies for generating 11 channels of AMSU-A-only atmospheric temperature data records from the lower troposphere to the top of the stratosphere. The recalibrated AMSU-A level 1c radiances recently developed by the Center for Satellite Applications and Research group were used. The recalibrated radiances were adjusted to a consistent sensor incidence angle (nadir), channel frequencies (prelaunch-specified central frequencies), and observation time (local solar noon time). Radiative transfer simulations were used to correct the sensor incidence angle effect and the National Oceanic and Atmospheric Administration-15 (NOAA-15) channel 6 frequency shift. Multiyear averaged diurnal/semidiurnal anomaly climatologies from climate reanalysis as well as climate model simulations were used to adjust satellite observations to local solar noon time. Adjusted AMSU-A measurements from six satellites were carefully quality controlled and merged to generate 13+ years (1998–2011) of a monthly 2.5° × 2.5° gridded atmospheric temperature data record. Major trend features in the AMSU-A-only atmospheric temperature time series, including global mean temperature trends and spatial trend patterns, were summarized.


2016 ◽  
Vol 20 (12) ◽  
pp. 4895-4911 ◽  
Author(s):  
Gabriëlle J. M. De Lannoy ◽  
Rolf H. Reichle

Abstract. Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.


2020 ◽  
Author(s):  
Samuel Favrichon ◽  
Carlos Jimenez ◽  
Catherine Prigent

Abstract. Microwave remote sensing can be used to monitor the time evolution of some key parameters over land, such as land surface temperature or surface water extent. Observations are made with instrument such as the Scanning Microwave Multichannel Radiometer (SMMR) before 1987, the Special Sensor Microwave/Imager (SSM/I) and the following Special Sensor Microwave Imager/Sounder (SSMIS) from 1987 and still operating, to the more recent Global Precipitation Mission Microwave Imager (GMI). As these instruments differ on some of their characteristics and use different calibration schemes, they need to be inter-calibrated before long time series products can be derived from the observations. Here an inter-calibration method is designed to remove major inconsistencies between the SMMR and other microwave radiometers for the 18 GHz and 37 GHz channels over continental surfaces. Because of a small overlap in observations and a ~6 h difference in overpassing times between SMMR and SSM/I, GMI was chosen as a reference despite the lack of a common observing period. The diurnal cycles from three years of GMI brightness temperatures are first calculated, and then used to evaluate SMMR differences. Based on a statistical analysis of the differences, a simple linear correction is implemented to calibrate SMMR on GMI. This correction is shown to also reduce the biases between SMMR and SSM/I, and can then be applied to SMMR observations to make them more coherent with existing data record of microwave brightness temperatures over continental surfaces.


2014 ◽  
Vol 31 (10) ◽  
pp. 2206-2222 ◽  
Author(s):  
Xiaolei Zou ◽  
Fuzhong Weng ◽  
H. Yang

Abstract The measurements from the Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding Unit-A (AMSU-A) on board NOAA polar-orbiting satellites have been extensively utilized for detecting atmospheric temperature trend during the last several decades. After the launch of the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite on 28 October 2011, MSU and AMSU-A time series will be overlapping with the Advanced Technology Microwave Sounder (ATMS) measurements. While ATMS inherited the central frequency and bandpass from most of AMSU-A sounding channels, its spatial resolution and noise features are, however, distinctly different from those of AMSU. In this study, the Backus–Gilbert method is used to optimally resample the ATMS data to AMSU-A fields of view (FOVs). The differences between the original and resampled ATMS data are demonstrated. By using the simultaneous nadir overpass (SNO) method, ATMS-resampled observations are collocated in space and time with AMSU-A data. The intersensor biases are then derived for each pair of ATMS–AMSU-A channels. It is shown that the brightness temperatures from ATMS now fall well within the AMSU data family after resampling and SNO cross calibration. Thus, the MSU–AMSU time series can be extended into future decades for more climate applications.


2020 ◽  
Vol 12 (18) ◽  
pp. 2988
Author(s):  
Wenze Yang ◽  
Huan Meng ◽  
Ralph R. Ferraro ◽  
Yong Chen

More than one decade of observations from the Advanced Microwave Sounding Unit-A (AMSU-A) onboard the polar-orbiting satellites NOAA-15 to NOAA-19 and European Meteorological Operational satellite program-A (MetOp-A) provided global information on atmospheric temperature profiles, water vapor, cloud, precipitation, etc. These observations were primarily intended for weather related prediction and applications, however, in order to meet the requirements for climate application, further reprocessing must be conducted to first eliminate any potential satellites biases. After the geolocation and cross-scan bias corrections were applied to the dataset, follow-on research focused on the comparison amongst AMSU-A window channels (e.g., 23.8, 31.4, 50.3 and 89.0 GHz) from the six different satellites to remove any inter-satellite inconsistency. Inter-satellite differences can arise from many error sources, such as bias drift, sun-heating-induced instrument variability in brightness temperatures, radiance dependent biases due to inaccurate calibration nonlinearity, etc. The Integrated microwave inter-calibration approach (IMICA) approach was adopted in this study for inter-satellite calibration of AMSU-A window channels after the appropriate standard deviation (STD) thresholds were identified to restrict Simultaneous Nadir Overpass (SNO) data for window channels. This was a critical step towards the development of a set of fundamental and thematic climate data records (CDRs) for hydrological and climatological applications. NOAA-15 served as the main reference satellite for this study. For ensuing studies that expand to beyond 2015, however, it is recommended that a different satellite be adopted as the reference due to concerns over potential degradation of NOAA-15 AMSU-A.


2020 ◽  
Vol 13 (10) ◽  
pp. 5481-5490
Author(s):  
Samuel Favrichon ◽  
Carlos Jimenez ◽  
Catherine Prigent

Abstract. Microwave remote sensing can be used to monitor the time evolution of some key parameters over land, such as land surface temperature or surface water extent. Observations are made with instruments, such as the Scanning Microwave Multichannel Radiometer (SMMR) before 1987, the Special Sensor Microwave/Imager (SSM/I) and the subsequent Special Sensor Microwave Imager/Sounder (SSMIS) from 1987 and still operating, and the more recent Global Precipitation Measurement Microwave Imager (GMI). As these instruments differ on some of their characteristics and use different calibration schemes, they need to be inter-calibrated before long-time-series products can be derived from the observations. Here an inter-calibration method is designed to remove major inconsistencies between the SMMR and other microwave radiometers for the 18 and 37 GHz channels over continental surfaces. Because of a small overlap in observations and a ∼6 h difference in overpassing times between SMMR and SSM/I, GMI was chosen as a reference despite the lack of a common observing period. The diurnal cycles from 3 years of GMI brightness temperatures are first calculated and then used to evaluate SMMR differences. Based on a statistical analysis of the differences, a simple linear correction is implemented to calibrate SMMR on GMI. This correction is shown to also reduce the biases between SMMR and SSM/I, and can then be applied to SMMR observations to make them more coherent with existing data records of microwave brightness temperatures over continental surfaces.


2010 ◽  
Vol 25 (1) ◽  
pp. 5-19 ◽  
Author(s):  
Fatima Karbou ◽  
Elisabeth Gérard ◽  
Florence Rabier

Abstract To improve the assimilation of Advanced Microwave Sounding Unit-A and -B (AMSU-A and -B) observations over land, three methods, based either on an estimation of the land emissivity or the land skin temperature directly from satellite observations, have been developed. Some feasibility studies have been performed in the Météo-France assimilation system in order to choose the most appropriate method for the system. This study reports on three 2-month assimilation and forecast experiments that use different methods to estimate AMSU-A and -B land emissivities together with the operational run as a control experiment. The experiments and the control have been subjected to several comparisons. The performance of the observation operator for simulating window channel brightness temperatures has been studied. The study shows considerable improvements in the statistics of the window channels’ first-guess departures (bias, standard deviation). The correlations between the observations and the model’s simulations have also been improved, especially over snow-covered areas. The performances of the assimilation system, in terms of cost function change, have been examined: the cost function is generally improved during the screening and remains stable during the minimization. Moreover, comparisons have been made in terms of impacts on both analyses and forecasts.


2010 ◽  
Vol 27 (6) ◽  
pp. 995-1004 ◽  
Author(s):  
Tsan Mo

Abstract Daily mean brightness temperatures over Antarctica derived from measurements by three Advanced Microwave Sounding Unit-A (AMSU-A) radiometers on board NOAA-18, NOAA-19, and MetOp-A satellites are studied. To demonstrate the characteristics of the data over this test site, time series of daily averages of the brightness temperatures are constructed. These time series provide a useful pattern of annual variation of the AMSU-A measurements for intercalibration of microwave radiometers on board multiple satellites. To investigate the diurnal effect on the measurements, the time series of daily averaged brightness temperatures are constructed separately for the ascending and descending passes. Results show that there are little diurnal differences in measurements during the Antarctic winter months from each satellite. Therefore these measurements provide a practical approach to obtain relative channel biases of intersatellite data. The monthly averages of the measurements over July 2009 are employed to obtain the relative channel biases because it is the coldest month in Antarctica. The resultant channel biases for the three satellites are within the range of ±0.1 K for channels 1–5 and ±0.3 K for channels 6–15. This is strong evidence that Antarctica is a potentially good test site for intercalibration of microwave radiometers on board multiple satellites. The small relative biases at channels 1–5 indicate that Antarctica is a very stable test site that is particularly useful for intercalibration of measurements from the window channels. The establishment of a natural test site for calibration references is important for calibration and validation of spaceborne microwave instruments.


2005 ◽  
Vol 20 (5) ◽  
pp. 761-774 ◽  
Author(s):  
Shuang Qiu ◽  
Paul Pellegrino ◽  
Ralph Ferraro ◽  
Limin Zhao

Abstract Rain-rate retrievals from passive microwave sensors are useful for a number of applications related to weather forecasting. For example, in the United States, such estimates are useful for offshore rainfall systems approaching land and in regions where the Weather Surveillance Radar-1988 Doppler (WSR-88D) network is inadequate. Improvements have been made to the rain-rate retrieval from the Advanced Microwave Sounding Unit (AMSU) on board the National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POESs). The new features of the improved rain-rate algorithm include a two-stream correction of the satellite brightness temperatures at 89 and 150 GHz, cloud- and rain-type classification for better retrieval of rain rate, and removal of the two ad hoc thresholds in the ice water path (IWP) and effective diameter (De) retrieval where the scattering signals are very small. In this paper, the new algorithm has been compared to the previous NOAA operational algorithm. In particular, the better utilization of the measurements at and above 150 GHz is shown to produce improved sensitivity to light rainfall associated with winter season storm systems. This improvement is demonstrated through a wintertime case study over southern California during February 2003.


2013 ◽  
Vol 6 (1) ◽  
pp. 453-494 ◽  
Author(s):  
D. S. Moreira ◽  
S. R. Freitas ◽  
J. P. Bonatti ◽  
L. M. Mercado ◽  
N. M. É. Rosário ◽  
...  

Abstract. This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.


Sign in / Sign up

Export Citation Format

Share Document