scholarly journals An NARR-Derived Climatology of Southerly and Northerly Low-Level Jets over North America and Coastal Environs

2015 ◽  
Vol 54 (7) ◽  
pp. 1596-1619 ◽  
Author(s):  
Dana L. Doubler ◽  
Julie A. Winkler ◽  
Xindi Bian ◽  
Claudia K. Walters ◽  
Shiyuan Zhong

AbstractThe North American Regional Reanalysis (NARR) was used to develop an expanded, long-term (1979–2009) climatology of meridional (southerly and northerly) low-level jets over North America and surrounding coastal environs. NARR has greater spatial coverage and finer temporal (3 hourly) and horizontal (32 km) resolutions than do routine rawinsonde wind measurements. The NARR climatology focuses on jet frequency and average speed and elevation by month and 3-hourly time step. To evaluate the plausibility of the climatology, jet characteristics were compared with those obtained from prior climatological analyses, case studies, field campaigns, and numerical simulations. Strong agreement was found with many of the previously documented characteristics of well-known jets, including the northerly Pacific coast jet and southerly Great Plains jet. The NARR climatology provides additional insights into the spatial extent and seasonal shifts of large jet frequencies and into diurnal fluctuations in frequency, speed, and elevation. Weaker and/or less spatially extensive jets are also well depicted in the NARR climatology, including the southerly Gulf of California jet, summertime southerly jets and autumn northerly jets off the mid-Atlantic coast, and northerly jets in the high plains. Furthermore, several new areas of relatively frequent jet occurrence, most of which align with shallow thermal gradients, are seen in the NARR climatology. The NARR climatology supplements and enhances our understanding of North American low-level jets and points to the need for additional research on both the climatological characteristics of these jets and on the processes contributing to their formation.

2013 ◽  
Vol 92 (2-3) ◽  
pp. 145-152 ◽  
Author(s):  
E.W.A. Mulder ◽  
P. Formanoy ◽  
W.B. Gallagher ◽  
J.W.M. Jagt ◽  
A.S. Schulp

AbstractFour recently collected tooth crowns of the rare latest Cretaceous (late Maastrichtian) durophagous mosasaur Carinodens belgicus are discussed; the first record from the Atlantic coast of North America (Maryland), and three additional in situ examples from the Maastrichtian type area in the southeast Netherlands and northeast Belgium. Also presented are an updated overview of the material recorded to date, and a discussion of the palaeobiogeographical and palaeoenvironmental distribution of the genus. Towards the end of the Cretaceous, Carinodens appears to have been successful in exploiting the margins of both the proto-Atlantic Ocean and the Tethyan Realm.


2021 ◽  
Author(s):  
Cameron de Wet ◽  
Jessica Oster ◽  
Daniel Ibarra ◽  
Bryce Belanger

<p>The Last Interglacial (LIG) period (~129,000–116,000 years BP) and the mid-Holocene (MH) (~6,000 years BP) are the two most recent intervals with temperatures comparable to low emissions scenarios for the end of the 21<sup>st</sup> century. During the LIG and the MH differences in the seasonal and latitudinal distribution of insolation led to enhanced northern hemisphere high-latitude warmth relative to the pre-industrial, despite similar greenhouse gas concentrations, marking these intervals as potentially useful analogs for future change in regions like North America. Further, the inclusion of both LIG (127 ka) and MH (6 ka) experiments in the CMIP6-PMIP4 effort provides an opportunity to better understand the regional hydroclimate responses to radiative forcing during these two intervals. The dense coverage of paleoclimate proxy records for North America during the MH (N=260 sites) reveals a pattern of relative aridity in the Pacific Northwest and Western Canada and wetness in the southern Great Basin and Mexico. However, the seasonality and driving mechanisms of rainfall patterns across the continent remain poorly understood. Our understanding of terrestrial hydroclimate in North America during the LIG is more limited (N=39 sites), largely because the LIG is beyond the range of radiocarbon dating.</p><p>Here we present spatial comparisons between output from 14 PMIP4 global circulation models and LIG and MH networks of moisture-sensitive proxies compiled for the North American continent. We utilize two statistical measures of agreement – weighted Cohen’s Kappa and Gwet’s AC2 – to assess the degree of categorical agreement between moisture patterns produced by the models and the proxy networks for each time-slice. PMIP4 models produce variable precipitation anomalies relative to the pre-industrial for both the LIG and MH experiments, often disagreeing on both the sign and magnitude of precipitation changes across much of North America. The models showing the best agreement with the proxy network are similar but not identical for the two measures, with Gwet’s AC2 values tending to be larger than Cohen’s Kappa values for all models. This pattern is enhanced for the much larger MH proxy network and is likely related to the fact that Gwet’s AC2 is a more predictable statistic in the presence of high agreement. Overall agreement is lower for the mid-Holocene than for the LIG, reflecting smaller MH rainfall anomalies in the models. The models with the highest agreement scores during the LIG produce aridity in the Rocky Mountains and Pacific Northwest and wetness in Alaska, the Yukon, the Great Basin, and parts of the Mid-West and Eastern US, although spatial coverage of the proxies in these latter two regions is poor. The models with the highest agreement score for the mid-Holocene tend to produce aridity across Canada and the northern US with dry conditions extending down the US Pacific coast and increased wetness in the American Southeast and across the North American Monsoon region. Our analyses help elucidate the driving mechanisms of rainfall patterns during past warm states and can inform which models may be the most useful for predictions of near-future hydroclimate change across North America.</p>


2014 ◽  
Vol 53 (9) ◽  
pp. 2093-2113 ◽  
Author(s):  
Claudia K. Walters ◽  
Julie A. Winkler ◽  
Sara Husseini ◽  
Ryan Keeling ◽  
Jovanka Nikolic ◽  
...  

AbstractClimatological analyses of low-level jets (LLJs) can be negatively influenced by the coarse spatial and temporal resolution and frequent changes in observing and archiving protocols of rawinsonde observations (raobs). The introduction of reanalysis datasets, such as the North American Regional Reanalysis (NARR), provides new resources for climatological research with finer spatial and temporal resolution and potentially fewer inhomogeneities. To assess the compatibility of LLJ characteristics identified from NARR wind profiles with those obtained from raob profiles, LLJs were extracted using standard jet definitions from NARR and raobs at 12 locations in the central United States for four representative years that reflect different rawinsonde protocols. LLJ characteristics (e.g., between-station differences in relative frequency, diurnal fluctuations, and mean speed and elevation) are generally consistent, although absolute frequencies are smaller for NARR relative to raobs at most stations. LLJs are concurrently identified in the NARR and raob wind profiles on less than 60% of the observation times with LLJ activity. Variations are seen between analysis years and locations. Of particular note is the substantial increase in LLJ frequency seen in raobs since the introduction of the Radiosonde Replacement System, which has led to a greater discrepancy in jet frequency between the NARR and raob datasets. The analyses suggest that NARR is a viable additional resource for climatological analyses of LLJs. Many of the findings are likely applicable for other fine-resolution reanalysis datasets, although differences between reanalyses require that each be carefully evaluated before its use in climatological analyses of wind maxima.


2016 ◽  
Vol 37 (1) ◽  
pp. 343-357 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Julie A. Winkler ◽  
Dana L. Doubler ◽  
Xindi Bian ◽  
...  

2007 ◽  
Vol 135 (9) ◽  
pp. 3098-3117 ◽  
Author(s):  
Peter J. Rogers ◽  
Richard H. Johnson

Abstract Gulf surges are disturbances that move northward along the Gulf of California (GOC), frequently advecting cool, moist air from the GOC or eastern tropical Pacific Ocean into the deserts of the southwest United States and northwest Mexico during the North American Monsoon (NAM). Little attention has been given to the dynamics of these disturbances because of the lack of reliable high-resolution data across the NAM region. High temporal and spatial observations collected during the 2004 North American Monsoon Experiment are used to investigate the structure and dynamical mechanisms of a significant gulf surge on 13–14 July 2004. Integrated Sounding Systems deployed along the east coast of the GOC and an enhanced network of rawinsonde sites across the NAM region are used in this study. Observations show that the 13–14 July gulf surge occurred in two primary stages. The first stage was preceded by anomalous low-level warming along the northern GOC on 13 July. Sharp cooling, moistening, and increased low-level south-southeasterly flow followed over a 12–18-h period. Over the northern gulf, the wind reached ∼20 m s−1 at 750 m AGL. Then there was a brief respite followed by the second stage—a similar, but deeper acceleration of the southerly flow associated with the passage of Tropical Storm (TS) Blas on 14 July. The initial surge disturbance traversed the GOC at a speed of ∼17–25 m s−1 and resulted in a deepening of the mixed layer along the northern gulf. Dramatic surface pressure rises also accompanied the surge. The weight of the evidence suggests that the first stage of the overall surge itself consisted of two parts. The initial part resembled borelike disturbances initiated by convective downdrafts impinging on the low-level stable layer over the region. The secondary part was characteristic of a Kelvin wave–type disturbance, as evident in the deeper layer of sharp cooling and strong wind that ensued. Another possible explanation for the first part is that the leading edge of this Kelvin wave steepened nonlinearly into a borelike disturbance. The second stage of the surge was associated with the increased circulation around TS Blas.


2019 ◽  
Vol 4 (2) ◽  
pp. 193-209 ◽  
Author(s):  
Peter C. Kalverla ◽  
James B. Duncan Jr. ◽  
Gert-Jan Steeneveld ◽  
Albert A. M. Holtslag

Abstract. Ten years of ERA5 reanalysis data are combined with met-mast and lidar observations from 10 offshore platforms to investigate low-level jet characteristics over the Dutch North Sea. The objective of this study is to combine the best of two worlds: (1) ERA5 data with a large spatiotemporal extent but inherent accuracy limitations due to a relatively coarse grid and an incomplete representation of physical processes and (2) observations that provide more reliable estimates of the measured quantity but are limited in both space and time. We demonstrate the effect of time and range limitations on the reconstructed wind climate, with special attention paid to the impact on low-level jets. For both measurement and model data, the representation of wind speed is biased. The limited temporal extent of observations leads to a wind speed bias on the order of ±1 m s−1 as compared to the long-term mean. In part due to data-assimilation strategies that cause abrupt discontinuities in the diurnal cycle, ERA5 also exhibits a wind speed bias of approximately 0.5 m s−1. The representation of low-level jets in ERA5 is poor in terms of a one-to-one correspondence, and the jets appear vertically displaced (“smeared out”). However, climatological characteristics such as the shape of the seasonal cycle and the affinity with certain circulation patterns are represented quite well, albeit with different magnitudes. We therefore experiment with various methods to adjust the modelled low-level jet rate to the observations or, vice versa, to correct for the erratic nature of the short observation periods using long-term ERA5 information. While quantitative uncertainty is still quite large, the presented results provide valuable insight into North Sea low-level jet characteristics. These jets occur predominantly for circulation types with an easterly component, with a clear peak in spring, and are concentrated along the coasts at heights between 50 and 200 m. Further, it is demonstrated that these characteristics can be used as predictors to infer the observed low-level jet rate from ERA5 data with reasonable accuracy.


2009 ◽  
Vol 22 (2) ◽  
pp. 217-233 ◽  
Author(s):  
Yan Ge ◽  
Gavin Gong

Abstract Snow–atmosphere relationships have been studied for nearly half a century, but the primary focus has been on snow extent variability, largely because of the relative scarcity of snow depth data. A recently released North American snow depth dataset, with extensive spatial coverage and multidecadal temporal duration, provides a new opportunity to compare snow depth–climate relationships with snow extent–climate relationships over North America. Robust concurrent lead and lag correlations are observed between snow depth and two major climate modes, the Pacific decadal oscillation (PDO) and the Pacific–North America (PNA) pattern, across North America and throughout the snow season. In contrast, snow extent exhibits a less coherent relationship with PDO and PNA except in late spring, which can be interpreted as a residual of the snow depth–climate mode relationship. A regional signature for the snow depth–PDO/PNA relationship is also identified, centered over interior central-western North America. Smaller scales mask the regional effect of PDO and PNA because of local snow depth variability, while larger continental scales exceed the regional domain of the climate mode teleconnections. Overall these results suggest that North American snow depth variability may have greater climatic causes and consequences than snow extent. Physical mechanisms that may be responsible for the observed snow depth–climate teleconnection patterns such as the surface energy balance, moisture transport, and atmospheric flow regimes are briefly discussed.


2009 ◽  
Vol 137 (8) ◽  
pp. 2605-2621 ◽  
Author(s):  
Anandakumar Karipot ◽  
Monique Y. Leclerc ◽  
Gengsheng Zhang

Abstract The seasonal and interannual variability of the nocturnal low-level jets over the north Florida region are investigated using sodar measurements spanning 540 nights. On average, jets are present in 62% of the nocturnal periods examined. The observed jet speeds range between 3 and 21 m s−1 and heights are between 80 and 700 m. Observations show that the low-level jet occurs more frequently (70% of the nocturnal periods) during the colder months November–February in contrast with the warmer months June–August (∼47%). The presence of southerly jets dominates the summer months, whereas northerly jets are more frequent during winter. Colder months frequently exhibit jets with speeds exceeding 14 m s−1, often associated with the passage of frontal systems. The interannual variability observed using the North American Regional Reanalysis (NARR) wind profile data during a 4-yr period shows only minimal differences in jet characteristics. A comparison of jet heights with NARR planetary boundary layer heights suggests that jets at the north Florida location frequently occur within the planetary boundary layer. The occurrence and speed of observed low-level jets are linked to both the land–ocean temperature contrast and to the strength and orientation of surface pressure gradients over the region. A high occurrence of large-amplitude oscillations with approximately a 24-h period near the jet height is shown using the Hilbert–Huang transform analysis, suggesting that inertial oscillations are one possible cause of jet formation in north Florida.


2015 ◽  
Vol 143 (5) ◽  
pp. 1970-1977 ◽  
Author(s):  
Ronald L. Holle ◽  
Martin J. Murphy

Abstract Temporal and spatial distributions of the North American monsoon have been studied previously with rainfall and satellite data. In the current study, the monsoon is examined with lightning data from Vaisala’s Global Lightning Dataset (GLD360). GLD360 has been operating for over three years and provides sufficient data to develop an exploratory climatology with minimal spatial variation in detection efficiency and location accuracy across the North American monsoon region. About 80% of strokes detected by GLD360 are cloud to ground. This paper focuses on seasonal, monthly, and diurnal features of lightning occurrence during the monsoon season from Mazatlán north-northwest to northern Arizona and New Mexico. The goal is to describe thunderstorm frequency with a dataset that provides uniform spatial coverage at a resolution of 2–5 km and uniform temporal coverage with individual lightning events resolved to the millisecond, compared with prior studies that used hourly point rainfall or satellite data with a resolution of several kilometers. The monthly lightning stroke density over northwestern Mexico increases between May and June, as thunderstorms begin over the high terrain east of the Gulf of California. The monthly lightning stroke density over the entire region increases dramatically to a maximum in July and August. The highest stroke densities observed in Mexico approach those observed by GLD360 in subtropical and tropical regions in Africa, Central and South America, and Southeast Asia. The diurnal cycle of lightning exhibits a maximum over the highest terrain near noon, associated with daytime solar heating, a maximum near midnight along the southern coast of the Gulf, and a gradual decay toward sunrise.


Sign in / Sign up

Export Citation Format

Share Document