scholarly journals A Method to Assess the Wind and Solar Resource and to Quantify Interannual Variability over the United States under Current and Projected Future Climate

2016 ◽  
Vol 55 (2) ◽  
pp. 345-363 ◽  
Author(s):  
Sue Ellen Haupt ◽  
Jeffrey Copeland ◽  
William Y. Y. Cheng ◽  
Yongxin Zhang ◽  
Caspar Ammann ◽  
...  

AbstractThe National Center for Atmospheric Research and the National Renewable Energy Laboratory (NREL) collaborated to develop a method to assess the interannual variability of wind and solar power over the contiguous United States under current and projected future climate conditions, for use with NREL’s Regional Energy Deployment System (ReEDS) model. The team leveraged a reanalysis-derived database to estimate the wind and solar power resources and their interannual variability under current climate conditions (1985–2005). Then, a projected future climate database for the time range of 2040–69 was derived on the basis of the North American Regional Climate Change Assessment Program (NARCCAP) regional climate model (RCM) simulations driven by free-running atmosphere–ocean general circulation models. To compare current and future climate variability, the team developed a baseline by decomposing the current climate reanalysis database into self-organizing maps (SOMs) to determine the predominant modes of variability. The current climate patterns found were compared with those of an NARCCAP-based future climate scenario, and the CRCM–CCSM combination was chosen to describe the future climate scenario. The future climate scenarios’ data were projected onto the Climate Four Dimensional Data Assimilation reanalysis SOMs. The projected future climate database was then created by resampling the reanalysis on the basis of the frequency of occurrence of the future SOM patterns, adjusting for the differences in magnitude of the wind speed or solar irradiance between the current and future climate conditions. Comparison of the changes in the frequency of occurrence of the SOM modes between current and future climate conditions indicates that the annual mean wind speed and solar irradiance could be expected to change by up to 10% (increasing or decreasing regionally).

2008 ◽  
Vol 21 (11) ◽  
pp. 2540-2557 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Enrique Sánchez

Abstract This paper analyzes the changes in the precipitation climatologies of Europe for the periods 1960–90 and 2070–2100 using a heterogeneous set of regional climate models (RCMs). The authors used the Climatic Research Unit (CRU) database to define a precipitation climatology for current climate conditions (1960–90), then compare the estimates with the RCMs’ simulations for the same period using spectral analysis. After the authors evaluated the performance of the models compared with validation data for current climate, they calculated the future climate spectra (2070–2100). Changes in the future climate have been evaluated in terms of differences in the phase and amplitude of the annual cycle with respect to present conditions. The results show that models provide consistent results and that under the A2 scenario (increased greenhouse gases conditions) precipitation climatologies in Europe are expected to suffer noticeable changes, the most important being a strengthening of the annual cycle in most of the Atlantic coastal areas of the continent. While total amounts of rainfall might undergo little change, the consequences of changes in the seasonal distribution of precipitation will strongly affect both ecosystems and human activities. Differences were also found in the probability distribution function (pdf) of precipitation, indicating an overall increase in the frequency of precipitation-related hazards in Europe.


2013 ◽  
Vol 10 (5) ◽  
pp. 6807-6845
Author(s):  
M. C. Demirel ◽  
M. J. Booij ◽  
A. Y. Hoekstra

Abstract. The impacts of climate change on the seasonality of low flows are analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch–German border. Three seasonality indices for low flows are estimated, namely seasonality ratio (SR), weighted mean occurrence day (WMOD) and weighted persistence (WP). These indices are related to the discharge regime, timing and variability in timing of low flow events respectively. The three indices are estimated from: (1) observed low flows; (2) simulated low flows by the semi distributed HBV model using observed climate; (3) simulated low flows using simulated inputs from seven climate scenarios for the current climate (1964–2007); (4) simulated low flows using simulated inputs from seven climate scenarios for the future climate (2063–2098) including different emission scenarios. These four cases are compared to assess the effects of the hydrological model, forcing by different climate models and different emission scenarios on the three indices. The seven climate scenarios are based on different combinations of four General Circulation Models (GCMs), four Regional Climate Models (RCMs) and three greenhouse gas emission scenarios. Significant differences are found between cases 1 and 2. For instance, the HBV model is prone to overestimate SR and to underestimate WP and simulates very late WMODs compared to the estimated WMODs using observed discharges. Comparing the results of cases 2 and 3, the smallest difference is found in the SR index, whereas large differences are found in the WMOD and WP indices for the current climate. Finally, comparing the results of cases 3 and 4, we found that SR has decreased substantially by 2063–2098 in all seven subbasins of the River Rhine. The lower values of SR for the future climate indicate a shift from winter low flows (SR > 1) to summer low flows (SR < 1) in the two Alpine subbasins. The WMODs of low flows tend to be earlier than for the current climate in all subbasins except for the Middle Rhine and Lower Rhine subbasins. The WP values are slightly larger, showing that the predictability of low flow events increases as the variability in timing decreases for the future climate. From comparison of the uncertainty sources evaluated in this study, it is obvious that the RCM/GCM uncertainty has the largest influence on the variability in timing of low flows for future climate.


2014 ◽  
Vol 15 (3) ◽  
pp. 1091-1116 ◽  
Author(s):  
Roy Rasmussen ◽  
Kyoko Ikeda ◽  
Changhai Liu ◽  
David Gochis ◽  
Martyn Clark ◽  
...  

Abstract A high-resolution climate model (4-km horizontal grid spacing) is used to examine the following question: How will long-term changes in climate impact the partitioning of annual precipitation between evapotranspiration and runoff in the Colorado Headwaters? This question is examined using a climate sensitivity approach in which eight years of current climate is compared to a future climate created by modifying the current climate signal with perturbation from the NCAR Community Climate System Model, version 3 (CCSM3), model forced by the A1B scenario for greenhouse gases out to 2050. The current climate period is shown to agree well with Snowpack Telemetry (SNOTEL) surface observations of precipitation (P) and snowpack, as well as streamflow and AmeriFlux evapotranspiration (ET) observations. The results show that the annual evaporative fraction (ET/P) for the Colorado Headwaters is 0.81 for the current climate and 0.83 for the future climate, indicating increasing aridity in the future despite a positive increase of precipitation. Runoff decreased by an average of 6%, reflecting the increased aridity. Precipitation increased in the future winter by 12%, but decreased in the summer as a result of increased low-level inhibition to convection. The fraction of precipitation that fell as snow decreased from 0.83 in the current climate to 0.74 in the future. Future snowpack did not change significantly until January. From January to March the snowpack increased above ~3000 m MSL and decreased below that level. Snowpack decreased at all elevations in the future from April to July. The peak snowpack and runoff over the headwaters occurred 2–3 weeks earlier in the future simulation, in agreement with previous studies.


2020 ◽  
Vol 163 (1) ◽  
pp. 267-296
Author(s):  
Rory G. J. Fitzpatrick ◽  
Douglas J. Parker ◽  
John H. Marsham ◽  
David P. Rowell ◽  
Lawrence S. Jackson ◽  
...  

AbstractCurrent-climate precipitation and temperature extremes have been identified by decision makers in West Africa as among the more impactful weather events causing lasting socioeconomic damage. In this article, we use a plausible future-climate scenario (RCP8.5) for the end of the twenty-first century to explore the relative commonness of such extremes under global warming. The analysis presented considers what a typical day in the future climate will feel like relative to current extrema. Across much of West Africa, we see that the typical future-climate day has maximum and minimum temperatures greater than 99.5% of currently experienced values. This finding exists for most months but is particularly pronounced during the Boreal spring and summer. The typical future precipitation event has a daily rainfall rate greater than 95% of current storms. These findings exist in both a future scenario model run with and without parameterised convection, and for many of the Coupled Model Inter-comparison Project version 5 ensemble members. Additionally, agronomic monsoon onset is projected to occur later and have greater inter-annual variability in the future. Our findings suggest far more extreme conditions in future climate over West Africa. The projected changes in temperature and precipitation could have serious socioeconomic implications, stressing the need for effective mitigation given the potential lack of adaptation pathways available to decision makers.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1300
Author(s):  
D. W. Shin ◽  
Steven Cocke ◽  
Guillermo A. Baigorria ◽  
Consuelo C. Romero ◽  
Baek-Min Kim ◽  
...  

Since maize, peanut, and cotton are economically valuable crops in the southeast United States, their yield amount changes in a future climate are attention-grabbing statistics demanded by associated stakeholders and policymakers. The Crop System Modeling—Decision Support System for Agrotechnology Transfer (CSM-DSSAT) models of maize, peanut, and cotton are, respectively, driven by the North American Regional Climate Change Assessment Program (NARCCAP) Phase II regional climate models to estimate current (1971–2000) and future (2041–2070) crop yield amounts. In particular, the future weather/climate data are based on the Special Report on Emission Scenarios (SRES) A2 emissions scenario. The NARCCAP realizations show on average that there will be large temperature increases (~2.7 °C) and minor rainfall decreases (~−0.10 mm/day) with pattern shifts in the southeast United States. With these future climate projections, the overall future crop yield amounts appear to be reduced under rainfed conditions. A better estimate of future crop yield amounts might be achievable by utilizing the so-called weighted ensemble method. It is proposed that the reduced crop yield amounts in the future could be mitigated by altering the currently adopted local planting dates without any irrigation support.


2013 ◽  
Vol 17 (10) ◽  
pp. 4241-4257 ◽  
Author(s):  
M. C. Demirel ◽  
M. J. Booij ◽  
A. Y. Hoekstra

Abstract. The impacts of climate change on the seasonality of low flows were analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch-German border. Three seasonality indices for low flows were estimated, namely the seasonality ratio (SR), weighted mean occurrence day (WMOD) and weighted persistence (WP). These indices are related to the discharge regime, timing and variability in timing of low flow events respectively. The three indices were estimated from: (1) observed low flows; (2) simulated low flows by the semi-distributed HBV model using observed climate as input; (3) simulated low flows using simulated inputs from seven combinations of General Circulation Models (GCMs) and Regional Climate Models (RCMs) for the current climate (1964–2007); (4) simulated low flows using simulated inputs from seven combinations of GCMs and RCMs for the future climate (2063–2098) including three different greenhouse gas emission scenarios. These four cases were compared to assess the effects of the hydrological model, forcing by different climate models and different emission scenarios on the three indices. Significant differences were found between cases 1 and 2. For instance, the HBV model is prone to overestimate SR and to underestimate WP and simulates very late WMODs compared to the estimated WMODs using observed discharges. Comparing the results of cases 2 and 3, the smallest difference was found for the SR index, whereas large differences were found for the WMOD and WP indices for the current climate. Finally, comparing the results of cases 3 and 4, we found that SR decreases substantially by 2063–2098 in all seven sub-basins of the River Rhine. The lower values of SR for the future climate indicate a shift from winter low flows (SR > 1) to summer low flows (SR < 1) in the two Alpine sub-basins. The WMODs of low flows tend to be earlier than for the current climate in all sub-basins except for the Middle Rhine and Lower Rhine sub-basins. The WP values are slightly larger, showing that the predictability of low flow events increases as the variability in timing decreases for the future climate. From comparison of the error sources evaluated in this study, it is obvious that different RCMs/GCMs have a larger influence on the timing of low flows than different emission scenarios. Finally, this study complements recent analyses of an international project (Rhineblick) by analysing the seasonality aspects of low flows and extends the scope further to understand the effects of hydrological model errors and climate change on three important low flow seasonality properties: regime, timing and persistence.


2021 ◽  
Vol 13 (12) ◽  
pp. 6522
Author(s):  
Tobias Mette ◽  
Susanne Brandl ◽  
Christian Kölling

Climate analogues provide forestry practice with empirical evidence of how forests are managed in “twin” regions, i.e., regions where the current climate is comparable to the expected future climate at a site of interest. As the twin regions and their silvicultural evidence change with each climate scenario and model, we focus our investigation on how the uncertainty in future climate affects tree species prevalence. We calculate the future climate from 2000 to 2100 for three ensemble variants of the mild (representative concentration pathway (RCP) 4.5) and hard (RCP 8.5) climate scenarios. We determine climatic distances between the future climate of our site of interest ‘Roth’ and the current climate in Europe, generating maps with twin regions from 2000 to 2100. From forest inventories in these twin regions we trace how the prevalence of 23 major tree species changes. We realize that it is not the ‘how’ but the ‘how fast’ species’ prevalence changes that differs between the scenario variants. We use this finding to develop a categorization of species groups that integrates the uncertainty in future climate. Twin regions provide further information on silvicultural practices, pest management, product chains etc.


2010 ◽  
Vol 20 (5) ◽  
pp. 643-651 ◽  
Author(s):  
Shaohong Wu ◽  
Du Zheng ◽  
Yunhe Yin ◽  
Erda Lin ◽  
Yinlong Xu

2009 ◽  
Vol 22 (8) ◽  
pp. 1944-1961 ◽  
Author(s):  
Bariş Önol ◽  
Fredrick H. M. Semazzi

Abstract In this study, the potential role of global warming in modulating the future climate over the eastern Mediterranean (EM) region has been investigated. The primary vehicle of this investigation is the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (ICTP-RegCM3), which was used to downscale the present and future climate scenario simulations generated by the NASA’s finite-volume GCM (fvGCM). The present-day (1961–90; RF) simulations and the future climate change projections (2071–2100; A2) are based on the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) emissions. During the Northern Hemispheric winter season, the general increase in precipitation over the northern sector of the EM region is present both in the fvGCM and RegCM3 model simulations. The regional model simulations reveal a significant increase (10%–50%) in winter precipitation over the Carpathian Mountains and along the east coast of the Black Sea, over the Kackar Mountains, and over the Caucasus Mountains. The large decrease in precipitation over the southeastern Turkey region that recharges the Euphrates and Tigris River basins could become a major source of concern for the countries downstream of this region. The model results also indicate that the autumn rains, which are primarily confined over Turkey for the current climate, will expand into Syria and Iraq in the future, which is consistent with the corresponding changes in the circulation pattern. The climate change over EM tends to manifest itself in terms of the modulation of North Atlantic Oscillation. During summer, temperature increase is as large as 7°C over the Balkan countries while changes for the rest of the region are in the range of 3°–4°C. Overall the temperature increase in summer is much greater than the corresponding changes during winter. Presentation of the climate change projections in terms of individual country averages is highly advantageous for the practical interpretation of the results. The consistence of the country averages for the RF RegCM3 projections with the corresponding averaged station data is compelling evidence of the added value of regional climate model downscaling.


Sign in / Sign up

Export Citation Format

Share Document