Application of Satellite- and NWP-Derived Wind Profiles to Military Airdrop Operations

2016 ◽  
Vol 55 (10) ◽  
pp. 2197-2209 ◽  
Author(s):  
David C. Meier ◽  
Steven T. Fiorino

AbstractThe Joint Precision Airdrop System (JPADS) has revolutionized military high-altitude airdrop capability, allowing delivery of equipment and supplies to smaller drop zones from higher altitudes than was previously possible. This capability relies on accurate wind data, currently provided by GPS dropsondes released in the vicinity of the drop zone shortly before the airdrop. This research investigates the potential for a wind-profiling algorithm to generate the required wind data from passive IR and microwave satellite soundings, eliminating the requirement for a hazardous dropsonde pass near the drop zone. The Atmospheric Infrared Sounder (AIRS) provides a 3D temperature field and determines the heights of 100 standard levels. From these data, the slopes of the isobaric pressure surfaces and temperature gradients are used to calculate wind speed and direction using the thermal wind relationship. The accuracy of these satellite-derived wind profiles is evaluated through comparison with rawinsonde measurements near the coordinates and time of the AIRS sounding. Further investigation of the wind profile accuracy is made by a comparison with numerical weather prediction (NWP) data worldwide, and the effect of cloud cover in the vicinity of the target coordinates is analyzed. The AIRS-derived winds are found to be less accurate than short-term NWP winds for the JPADS application, but the technique developed may be applied to alternate applications, such as use in the stratosphere, where NWP winds are not widely available. The agreement between satellite-retrieved temperatures and measurements at altitudes above 30 km indicates the AIRS data could be used to create accurate, 3D fields of optical turbulence strengths for directed-energy applications.

2020 ◽  
Vol 101 (11) ◽  
pp. E2005-E2021
Author(s):  
Ad Stoffelen ◽  
Angela Benedetti ◽  
Régis Borde ◽  
Alain Dabas ◽  
Pierre Flamant ◽  
...  

AbstractThe Aeolus mission objectives are to improve numerical weather prediction (NWP) and enhance the understanding and modeling of atmospheric dynamics on global and regional scale. Given the first successes of Aeolus in NWP, it is time to look forward to future vertical wind profiling capability to fulfill the rolling requirements in operational meteorology. Requirements for wind profiles and information on vertical wind shear are constantly evolving. The need for high-quality wind and profile information to capture and initialize small-amplitude, fast-evolving, and mesoscale dynamical structures increases, as the resolution of global NWP improved well into the 3D turbulence regime on horizontal scales smaller than 500 km. In addition, advanced requirements to describe the transport and dispersion of atmospheric constituents and better depict the circulation on climate scales are well recognized. Direct wind profile observations over the oceans, tropics, and Southern Hemisphere are not provided by the current global observing system. Looking to the future, most other wind observation techniques rely on cloud or regions of water vapor and are necessarily restricted in coverage. Therefore, after its full demonstration, an operational Aeolus-like follow-on mission obtaining globally distributed wind profiles in clear air by exploiting molecular scattering remains unique.


2021 ◽  
Author(s):  
Francisco Albuquerque Neto ◽  
Vinicius Almeida ◽  
Julia Carelli

<p>In recent years, the use of radar wind profilers (RWP) at airports has grown significantly with the aim of supporting decision makers to maintain the safety of aircraft landings and takeoffs.</p><p>The RWP provide vertical profiles of averaged horizontal wind speed and direction and vertical wind velocity for the entire Atmospheric Boundary Layer (ABL) and beyond. In addition, RWP with Radio-Acoustic Sounding System (RASS) are able to retrieve virtual temperature profiles in the ABL.</p><p>RWP data evaluation is usually based on the so-called Doppler Beam Swinging method (DBS) which assumes homogeneity and stationarity of the wind field. Often, transient eddies violate this homogeneity and stationarity requirement. Hence, incorrect wind profiles can relate to transient eddies and present a problem for the forecast of high-impact weather phenomena in airports. This work intends to provide a method for removing outliers in such profiles based on historical data and other variables related to the Atmospheric Boundary Layer stability profile in the study region.</p><p>For this study, a dataset of almost one year retrieved from a RWP LAP3000 with RASS Extension is used for a wind profile correction algorithm development.</p><p>The algorithm consists of the detection of outliers in the wind profiles based on the thermodynamic structure of the ABL and the generation of the corrected profiles.</p><p>Results show that the algorithm is capable of identifying and correcting unrealistic variations in speed caused by transient eddies. The method can be applied as a complement to the RWP data processing for better data reliability.</p><p> </p><p>Keywords: atmospheric boundary layer; stability profile; wind profile</p>


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2949 ◽  
Author(s):  
Lee ◽  
Kim ◽  
Kang ◽  
Kim

Although the size of the wind turbine has become larger to improve the economic feasibility of wind power generation, whether increases in rotor diameter and hub height always lead to the optimization of energy cost remains to be seen. This paper proposes an algorithm that calculates the optimized hub height to minimize the cost of energy (COE) using the regional wind profile database. The optimized hub height was determined by identifying the minimum COE after calculating the annual energy production (AEP) and cost increase, according to hub height increase, by using the wind profiles of the wind resource map in South Korea and drawing the COE curve. The optimized hub altitude was calculated as 75~80 m in the inland plain but as 60~70 m in onshore or mountain sites, where the wind profile at the lower layer from the hub height showed relatively strong wind speed than that in inland plain. The AEP loss due to the decrease in hub height was compensated for by increasing the rotor diameter, in which case COE also decreased in the entire region of South Korea. The proposed algorithm of identifying the optimized hub height is expected to serve as a good guideline when determining the hub height according to different geographic regions.


2015 ◽  
Vol 143 (10) ◽  
pp. 4244-4277 ◽  
Author(s):  
Casey E. Davenport ◽  
Matthew D. Parker

Abstract On 9 June 2009, the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) sampled a supercell as it traversed through an increasingly stable environment with decreasing bulk shear and storm-relative helicity. To investigate the impacts of the observed environmental heterogeneity on storm morphology, a series of idealized simulations were conducted. Utilizing the base-state substitution modeling technique, the separate effects of the changing wind profile and the increasingly stable boundary layer were evaluated. The varying base-state environment in each experiment elevated the mean source region of updraft parcels. These elevated parcels were drier (with less instability), and more negatively impacted by entrainment. Thus, as the updraft ingested a larger fraction of elevated parcels, its buoyancy was depleted, leading to demise. Unsurprisingly, the increasingly stable low-level environment played a dominant role in this process; however, wind profile modifications also elevated the mean source region of updraft parcels, which independently impacted storm strength and morphology. Changes to the storm’s internal dynamical processes were assessed using the diagnostic pressure equation. The evolution in total vertical acceleration was primarily related to changes in accelerations that were connected to updraft rotation, as well as shifts in buoyancy. The dynamical accelerations weakened and became maximized at a different altitude, resulting in an increasingly elevated updraft parcel source region. Overall, this study finds that a shifting updraft parcel source region can significantly impact storm maintenance; importantly, such a shift can result from changes in environmental temperature, moisture, or wind profiles.


Author(s):  
Lokukaluge P. Perera ◽  
Brage Mo ◽  
Matthias P. Nowak

Ship performance and navigation data are collected by vessels that are equipped with various supervisory control and data acquisition systems (SCADA). Such information is collected as large-scale data sets, therefore various analysis tools and techniques are required to extract useful information from the same. The extracted information on ship performance and navigation conditions can be used to implement energy efficiency and emission control applications (i.e. weather routing type applications) on these vessels. Hence, this study proposes to develop data visualizing methods in order to extract ship performance and navigation information from the respective data sets in relation to weather conditions. The relative wind (i.e. apparent wind) profile (i.e. wind speed and direction) collected by onboard sensors and absolute weather conditions, which are extracted from external data sources by using position and time information a selected vessel (i.e. from the recorded ship routes), are considered. Hence, the relative wind profile of the vessel is compared with actual weather conditions to visualize ship performance and navigation parameters relationships, as the main contribution. It is believed that such relationships can be used to develop appropriate mathematical models to predict ship performance and navigation conditions under various weather conditions.


2007 ◽  
Vol 24 (9) ◽  
pp. 1546-1561 ◽  
Author(s):  
Likun Wang ◽  
Changyong Cao ◽  
Pubu Ciren

Abstract The High-Resolution Infrared Radiation Sounder (HIRS) has been carried on NOAA satellites for more than two decades, and the HIRS data have been widely used for geophysical retrievals, climate studies, and radiance assimilation for numerical weather prediction models. However, given the legacy of the filter-wheel radiometer originally designed in the 1970s, the HIRS measurement accuracy is neither well documented nor well understood, despite the importance of this information for data users, instrument manufacturers, and calibration scientists. The advent of hyperspectral sounders, such as the Atmospheric Infrared Sounder (AIRS), and intersatellite calibration techniques makes it possible to independently assess the accuracy of the HIRS radiances. This study independently assesses the data quality and calibration accuracy of HIRS by comparing the radiances between HIRS on NOAA-16 and AIRS on Aqua with simultaneous nadir overpass (SNO) observations for the year 2004. The results suggest that the HIRS radiometric bias relative to the AIRS-convolved HIRS radiance is on the order of ∼0.5 K, except channel 16, which has a bias of 0.8 K. For all eight spectrally overlapped channels, the observations by HIRS are warmer than the corresponding AIRS-convolved HIRS channel. Other than channel 16, the biases are temperature dependent. The root causes of the bias can be traced to a combination of the HIRS blackbody emissivity, nonlinearity, and spectral uncertainties. This study further demonstrates the utility of high-spectral-resolution radiance measurements for high-accuracy assessments of broadband radiometer calibration with the SNO observations.


2009 ◽  
Vol 45 (2) ◽  
pp. 138-148 ◽  
Author(s):  
Phillip Sprangle ◽  
Antonio Ting ◽  
Joseph Penano ◽  
Richard Fischer ◽  
Bahman Hafizi

Sign in / Sign up

Export Citation Format

Share Document