scholarly journals Historical Spatial and Temporal Climate Trends in Southern Ontario, Canada

2017 ◽  
Vol 56 (10) ◽  
pp. 2767-2787 ◽  
Author(s):  
Hussein Wazneh ◽  
M. Altaf Arain ◽  
Paulin Coulibaly

AbstractSpatial and temporal trends in historical temperature and precipitation extreme events were evaluated for southern Ontario, Canada. A number of climate indices were computed using observed and regional and global climate datasets for the area of study over the 1951–2013 period. A decrease in the frequency of cold temperature extremes and an increase in the frequency of warm temperature extremes was observed in the region. Overall, the numbers of extremely cold days decreased and hot nights increased. Nighttime warming was greater than daytime warming. The annual total precipitation and the frequency of extreme precipitation also increased. Spatially, for the precipitation indices, no significant trends were observed for annual total precipitation and extremely wet days in the southwest and the central part of Ontario. For temperature indices, cool days and warm night have significant trends in more than 90% of the study area. In general, the spatial variability of precipitation indices is much higher than that of temperature indices. In terms of comparisons between observed and simulated data, results showed large differences for both temperature and precipitation indices. For this region, the regional climate model was able to reproduce historical observed trends in climate indices very well as compared with global climate models. The statistical bias-correction method generally improved the ability of the global climate models to accurately simulate observed trends in climate indices.

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Suchada Kamworapan ◽  
Chinnawat Surussavadee

This study evaluates the performances of all forty different global climate models (GCMs) that participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5) for simulating climatological temperature and precipitation for Southeast Asia. Historical simulations of climatological temperature and precipitation of the 40 GCMs for the 40-year period of 1960–1999 for both land and sea and those for the century of 1901–1999 for land are evaluated using observation and reanalysis datasets. Nineteen different performance metrics are employed. The results show that the performances of different GCMs vary greatly. CNRM-CM5-2 performs best among the 40 GCMs, where its total error is 3.25 times less than that of GCM performing worst. The performance of CNRM-CM5-2 is compared with those of the ensemble average of all 40 GCMs (40-GCM-Ensemble) and the ensemble average of the 6 best GCMs (6-GCM-Ensemble) for four categories, i.e., temperature only, precipitation only, land only, and sea only. While 40-GCM-Ensemble performs best for temperature, 6-GCM-Ensemble performs best for precipitation. 6-GCM-Ensemble performs best for temperature and precipitation simulations over sea, whereas CNRM-CM5-2 performs best over land. Overall results show that 6-GCM-Ensemble performs best and is followed by CNRM-CM5-2 and 40-GCM-Ensemble, respectively. The total errors of 6-GCM-Ensemble, CNRM-CM5-2, and 40-GCM-Ensemble are 11.84, 13.69, and 14.09, respectively. 6-GCM-Ensemble and CNRM-CM5-2 agree well with observations and can provide useful climate simulations for Southeast Asia. This suggests the use of 6-GCM-Ensemble and CNRM-CM5-2 for climate studies and projections for Southeast Asia.


2018 ◽  
Vol 115 (6) ◽  
pp. 1180-1185 ◽  
Author(s):  
Sarah B. Kapnick ◽  
Xiaosong Yang ◽  
Gabriel A. Vecchi ◽  
Thomas L. Delworth ◽  
Rich Gudgel ◽  
...  

Western US snowpack—snow that accumulates on the ground in the mountains—plays a critical role in regional hydroclimate and water supply, with 80% of snowmelt runoff being used for agriculture. While climate projections provide estimates of snowpack loss by the end of the century and weather forecasts provide predictions of weather conditions out to 2 weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), crucial for regional agricultural decisions (e.g., plant choice and quantity). Seasonal predictions with climate models first took the form of El Niño predictions 3 decades ago, with hydroclimate predictions emerging more recently. While the field has been focused on single-season predictions (3 months or less), we are now poised to advance our predictions beyond this timeframe. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate the feasibility of seasonal snowpack predictions and quantify the limits of predictive skill 8 months in advance. This physically based dynamic system outperforms observation-based statistical predictions made on July 1 for March snowpack everywhere except the southern Sierra Nevada, a region where prediction skill is nonexistent for every predictor presently tested. Additionally, in the absence of externally forced negative trends in snowpack, narrow maritime mountain ranges with high hydroclimate variability pose a challenge for seasonal prediction in our present system; natural snowpack variability may inherently be unpredictable at this timescale. This work highlights present prediction system successes and gives cause for optimism for developing seasonal predictions for societal needs.


2022 ◽  
Author(s):  
Mohammad Naser Sediqi ◽  
Vempi Satriya Adi Hendrawan ◽  
Daisuke Komori

Abstract The global climate models (GCMs) of Coupled Model Intercomparison Project phase 6 (CMIP6) were used spatiotemporal projections of precipitation and temperature over Afghanistan for three shared socioeconomic pathways (SSP1-2.6, 2-4.5 and 5-8.5) and two future time horizons, early (2020-2059) and late (2060-2099). The Compromise Programming (CP) approach was employed to order the GCMs based on their skill to replicate precipitation and temperature climatology for the reference period (1975-2014). Three models, namely ACCESS-CM2, MPI-ESM1-2-LR, and FIO-ESM-2-0, showed the highest skill in simulating all three variables, and therefore, were chosen for the future projections. The ensemble mean of the GCMs showed an increase in maximum temperature by 1.5-2.5oC, 2.7-4.3 oC, and 4.5-5.3 oC and minimum temperature by 1.3-1.8 oC, 2.2-3.5 oC, and 4.6-5.2 oC for SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively in the later period. Meanwhile, the changes in precipitation in the range of -15-18%, -36-47% and -40-68% for SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The temperature and precipitation were projected to increase in the highlands and decrease over the deserts, indicating dry regions would be drier and wet regions wetter.


1990 ◽  
Vol 14 ◽  
pp. 191-194 ◽  
Author(s):  
L.R. Mayo ◽  
R.S. March

Measurements at Wolverine Glacier, Alaska, from 1968 to 1988 indicate unsteady increases of air temperature and precipitation since the early 1970s. These increases were due almost entirely to changes in winter. Variations in annual temperature and precipitation at Wolverine Glacier and at Seward, a nearby climatological station at sea level, correlate positively with global temperature variations and are in general agreement with the changes at high latitudes predicted by five recent general atmospheric circulation models forced by anticipated rises of CO2. A consequence of the air temperature and precipitation increases at Wolverine Glacier was a change to a generally positive mass balance after 1976. Although these observations in the coastal maritime climate of Alaska run against the common, oversimplified notion that in a warming climate glaciers will melt, causing sea level to rise, they are logical and easily understood when the sensitivity of the glacier to the seasonal distribution of the changes is considered. The observed seasonal changes at Wolverine Glacier also are in agreement with global climate models. Snow precipitation and glacier accumulation increased, but at the same time warming affected only these those temperatures below about −5°C, and melting was not altered. The extent of this response is not well known, but the process may be taking place in other important glacierized regions.


2019 ◽  
Vol 5 (1) ◽  
pp. eaav5014 ◽  
Author(s):  
Julius J. M. Busecke ◽  
Ryan P. Abernathey

Mesoscale turbulence in the ocean strongly affects the circulation, water mass formation, and transport of tracers. Little is known, however, about how mixing varies on climate timescales. We present the first time-resolved global dataset of lateral mesoscale eddy diffusivities at the ocean surface, obtained by applying the suppressed mixing length theory to satellite-observed velocities. We find interannual variability throughout the global ocean, regionally correlated with climate indices such as ENSO, NAO, DMI, and PDO. Changes in mixing length, driven by variations in the large-scale flow, often exceed the effect of variations in local eddy kinetic energy, previously thought of as the primary driver of variability in eddy mixing. This mechanism, not currently represented in global climate models, could have far-reaching consequences for the distribution of heat, salt, and carbon in the global ocean, as well as ecosystem dynamics and regional dynamics such as ENSO variance.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 699
Author(s):  
Dario Conte ◽  
Silvio Gualdi ◽  
Piero Lionello

This study explores the role of model resolution on the simulation of precipitation and on the estimate of its future change in the Mediterranean region. It compares the results of two regional climate models (RCMs, with two different horizontal grid resolutions, 0.44 and 0.11 degs, covering the whole Mediterranean region) and of the global climate model (GCM, 0.75 degs) that has provided the boundary conditions for them. The regional climate models include an interactive oceanic component with a resolution of 1/16 degs. The period 1960–2100 and the representative concentration pathways RCP4.5 and RCP8.5 are considered. The results show that, in the present climate, increasing resolution increases total precipitation and its extremes over steep orography, while it has the opposite effect over flat areas and the sea. Considering climate change, in all simulations, total precipitation will decrease over most of the considered domain except at the northern boundary, where it will increase. Extreme precipitation will increase over most of the northern Mediterranean region and decrease over the sea and some southern areas. Further, the overall probability of precipitation (frequency of wet days) significantly decreases over most of the region, but wet days will be characterized with precipitation intensity higher than the present. Our analysis shows that: (1) these projected changes are robust with respect to the considered range of model resolution; (2) increasing the resolution (within the considered resolution range) decreases the magnitude of these climate change effects. However, it is likely that resolution plays a less important role than other factors, such as the different physics of regional and global climate models. It remains to be investigated whether further increasing the resolution (and reaching the scale explicitly permitting convection) would change this conclusion.


Sign in / Sign up

Export Citation Format

Share Document