Isentropic Slopes, Downgradient Eddy Fluxes, and the Extratropical Atmospheric Circulation Response to Tropical Tropospheric Heating

2011 ◽  
Vol 68 (10) ◽  
pp. 2292-2305 ◽  
Author(s):  
Amy H. Butler ◽  
David W. J. Thompson ◽  
Thomas Birner

Abstract Climate change experiments run on Intergovernmental Panel on Climate Change (IPCC)–class numerical models consistently suggest that increasing concentrations of greenhouse gases will lead to a poleward shift of the midlatitude jets and their associated eddy fluxes of heat and potential vorticity (PV). Experiments run on idealized models suggest that the poleward contraction of the jets can be traced to the effects of increased latent heating and thus locally enhanced warming in the tropical troposphere. Here the authors provide new insights into the dynamics of the circulation response to tropical tropospheric heating using transient experiments in an idealized general circulation model. It is argued that the response of the midlatitude jets to tropical heating is driven fundamentally by 1) the projection of the heating onto the meridional slope of the lower tropospheric isentropic surfaces, and 2) a diffusive model of the eddy fluxes of heat and PV. In the lower and middle troposphere, regions where the meridional slope of the isentropes (i.e., the baroclinicity) is increased are marked by anomalously poleward eddy fluxes of heat, and vice versa. Near the tropopause, regions where the meridional gradients in PV are increased are characterized by anomalously equatorward eddy fluxes of PV, and vice versa. The barotropic component of the response is shown to be closely approximated by the changes in the lower-level heat fluxes. As such, the changes in the eddy fluxes of momentum near the tropopause appear to be driven primarily by the changes in wave generation in the lower troposphere.

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Joo-Heon Lee ◽  
Hyun-Han Kwon ◽  
Ho-Won Jang ◽  
Tae-Woong Kim

This study attempts to analyze several drought features in South Korea from various perspectives using a three-month standard precipitation index. In particular, this study aims to evaluate changes in spatial distribution in terms of frequency and severity of droughts in the future due to climate change, using IPCC (intergovernmental panel on climate change) GCM (general circulation model) simulations. First, the Mann-Kendall method was adopted to identify drought trends at the five major watersheds. The simulated temporal evolution of SPI (standardized precipitation index) during the winter showed significant drying trends in most parts of the watersheds, while the simulated SPI during the spring showed a somewhat different feature in the GCMs. Second, this study explored the low-frequency patterns associated with drought by comparing global wavelet power, with significance test. Future spectra decreased in the fractional variance attributed to a reduction in the interannual band from 2 to 8 years. Finally, the changes in the frequency and the severity under climate change were evaluated through the drought spell analyses. Overall features of drought conditions in the future showed a tendency to increase (about 6%) in frequency and severity of droughts during the dry season (i.e., from October to May) under climate change.


2020 ◽  
Author(s):  
Jonathan M. Gregory ◽  
Steven E. George ◽  
Robin S. Smith

Abstract. We have studied the evolution of the Greenland ice-sheet under a range of constant climates typical of those projected for the end of the present century, using a dynamical ice-sheet model (Glimmer) coupled to an atmospheric general circulation model (FAMOUS-ice AGCM). The ice-sheet surface mass balance (SMB) is simulated by the AGCM, including its dependence on altitude within AGCM gridboxes. Over millennia under a warmer climate, the ice-sheet reaches a new steady state, whose mass is correlated with the initial perturbation in SMB, and hence with the magnitude of global climate change imposed. For the largest global warming considered (about +5 K), the contribution to global-mean sea-level rise (GMSLR) is initially 2.7 mm yr−1, and the ice-sheet is eventually practically eliminated (giving over 7 m of GMSLR). For all RCP8.5 climates, final GMSLR exceeds 4 m. If recent climate were maintained, GMSLR would reach 1.5–2.5 m. Contrary to expectation from earlier work, we find no evidence for a threshold warming that divides scenarios in which the ice-sheet suffers little reduction from those which it is mostly lost. This is because the dominant effect is reduction of area, not reduction of surface altitude, and the geographical variation of SMB must be taken into account. The final steady state is achieved by withdrawal from the coast in some places, and a tendency for increasing SMB due to enhancement of cloudiness and snowfall over the remaining ice-sheet, through the effects of topographic change on atmospheric circulation. If late twentieth-century climate is restored, the ice-sheet will not regrow to its present extent, owing to such effects, once its mass has fallen below a threshold of about 4 m of sea-level equivalent. In that case, about 2 m of GMSLR would become irreversible. In order to avoid this outcome, anthropogenic climate change must be reversed before the ice-sheet has declined to the threshold mass, which would be reached in about 600 years at the highest rate of mass-loss within the likely range of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.


2012 ◽  
Vol 25 (12) ◽  
pp. 4097-4115 ◽  
Author(s):  
Shuguang Wang ◽  
Edwin P. Gerber ◽  
Lorenzo M. Polvani

Abstract The circulation response of the atmosphere to climate change–like thermal forcing is explored with a relatively simple, stratosphere-resolving general circulation model. The model is forced with highly idealized physics, but integrates the primitive equations at resolution comparable to comprehensive climate models. An imposed forcing mimics the warming induced by greenhouse gasses in the low-latitude upper troposphere. The forcing amplitude is progressively increased over a range comparable in magnitude to the warming projected by Intergovernmental Panel on Climate Change coupled climate model scenarios. For weak to moderate warming, the circulation response is remarkably similar to that found in comprehensive models: the Hadley cell widens and weakens, the tropospheric midlatitude jets shift poleward, and the Brewer–Dobson circulation (BDC) increases. However, when the warming of the tropical upper troposphere exceeds a critical threshold, ~5 K, an abrupt change of the atmospheric circulation is observed. In the troposphere the extratropical eddy-driven jet jumps poleward nearly 10°. In the stratosphere the polar vortex intensifies and the BDC weakens as the intraseasonal coupling between the troposphere and the stratosphere shuts down. The key result of this study is that an abrupt climate transition can be effected by changes in atmospheric dynamics alone, without need for the strong nonlinearities typically associated with physical parameterizations. It is verified that the abrupt climate shift reported here is not an artifact of the model’s resolution or numerics.


2013 ◽  
Vol 26 (24) ◽  
pp. 9923-9930 ◽  
Author(s):  
Cheikh Mbengue ◽  
Tapio Schneider

Abstract Earth’s storm tracks are instrumental for transporting heat, momentum, and moisture and thus strongly influence the surface climate. Climate models, supported by a growing body of observational data, have demonstrated that storm tracks shift poleward as the climate warms. But the dynamical mechanisms responsible for this shift remain unclear. To isolate what portion of the storm track shift may be accounted for by large-scale dry dynamics alone, disregarding the latent heat released in phase changes of water, this study investigates the storm track shift under various kinds of climate change in an idealized dry general circulation model (GCM) with an adjustable but constant convective stability. It is found that increasing the mean surface temperature or the convective stability leads to poleward shifts of storm tracks, even if the convective stability is increased only in a narrow band around the equator. Under warming and convective stability changes roughly corresponding to a doubling of CO2 concentrations from a present-day Earthlike climate, storm tracks shift about 0.8° poleward, somewhat less than but in qualitative agreement with studies using moist GCMs. About 63% (0.5°) of the poleward shift is shown to be caused by tropical convective stability variations. This demonstrates that tropical processes alone (the increased dry static stability of a warmer moist adiabat) can account for part of the poleward shift of storm tracks under global warming. This poleward shift generally occurs in tandem with a poleward expansion of the Hadley circulation; however, the Hadley circulation expansion does not always parallel the storm track shift.


One of climate change's most important concerns at the moment is its impact on hydrology as it has direct links with agriculture, vegetation, and livelihood. This study tries to analyze potential future climate change in the Kumaradhara river basin. This study involved three steps: (1) acquiring and using general circulation model (GCM) to project future global climate scenarios; (2) establishing statistical relationships between GCM data and observed data using Statistical Downscaling Model (SDSM); (3) downscaling the second generation Canadian Earth system Model (CanESM2)GCM output based on the established statistical relationship. The statistical downscaling is carried out for three scenarios used in the fifth evaluation report of the recent Intergovernmental Panel on Climate Change (IPCC) viz., Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5. The statistical downscaling Model (SDSM) results showed that the mean annual daily precipitation is altered in the basin under all the scenarios but it will be different in different time periods depending on scenarios and the basin will experience the reduced precipitation levels in summer. Also the precipitation will marginally rise in all the time slices with reference to baseline data. We can conclude from the results that this region's climate will affect future farming as the availability of water is bound to change. This study should, however, be followed up by a larger study incorporating multiple CMIP5 models such that changes in hydrological-regimes can be examined appropriately.


2011 ◽  
Vol 68 (6) ◽  
pp. 1253-1272 ◽  
Author(s):  
Gwendal Rivière

Abstract The role played by enhanced upper-tropospheric baroclinicity in the poleward shift of the jet streams in global warming scenarios is investigated. Major differences between the twentieth- and twenty-first-century simulations are first detailed using two coupled climate model outputs. There is a poleward shift of the eddy-driven jets, an increase in intensity and poleward shift of the storm tracks, a strengthening of the upper-tropospheric baroclinicity, and an increase in the eddy length scale. These properties are more obvious in the Southern Hemisphere. A strengthening of the poleward eddy momentum fluxes and a relative decrease in frequency of cyclonic wave breaking compared to anticyclonic wave breaking events is also observed. Then, baroclinic instability in the three-level quasigeostrophic model is studied analytically and offers a simple explanation for the increased eddy spatial scale. It is shown that if the potential vorticity gradient changes its sign below the midlevel (i.e., if the critical level is located in the lower troposphere as in the real atmosphere), long and short wavelengths become respectively more and less unstable when the upper-tropospheric baroclinicity is increased. Finally, a simple dry atmospheric general circulation model (GCM) is used to confirm the key role played by the upper-level baroclinicity by employing a normal-mode approach and long-term simulations forced by a temperature relaxation. The eddy length scale is shown to largely determine the nature of the breaking: long (short) wavelengths break more anticyclonically (cyclonically). When the upper-tropospheric baroclinicity is reinforced, long wavelengths become more unstable, break more strongly anticyclonically, and push the jet more poleward. Short wavelengths being less unstable, they are less efficient in pushing the jet equatorward. This provides an interpretation for the increased poleward eddy momentum fluxes and thus the poleward shift of the eddy-driven jets.


2013 ◽  
Vol 26 (22) ◽  
pp. 8881-8894 ◽  
Author(s):  
Mohamed S. Siam ◽  
Marie-Estelle Demory ◽  
Elfatih A. B. Eltahir

Abstract The simulations and predictions of the hydrological cycle by general circulation models (GCMs) are characterized by a significant degree of uncertainty. This uncertainty is reflected in the range of Intergovernmental Panel on Climate Change (IPCC) GCM predictions of future changes in the hydrological cycle, particularly over major African basins. The confidence in GCM predictions can be increased by evaluating different GCMs, identifying those models that succeed in simulating the hydrological cycle under current climate conditions, and using them for climate change studies. Reanalyses are often used to validate GCMs, but they also suffer from an inaccurate representation of the hydrological cycle. In this study, the aim is to identify GCMs and reanalyses' products that provide a realistic representation of the hydrological cycle over the Congo and upper Blue Nile (UBN) basins. Atmospheric and soil water balance constraints are employed to evaluate the models' ability to reproduce the observed streamflow, which is the most accurate measurement of the hydrological cycle. Among the ECMWF Interim Re-Analysis (ERA-Interim), NCEP–NCAR reanalysis, and 40-yr ECWMF Re-Analysis (ERA-40), ERA-Interim shows the best performance over these basins: it balances the water budgets and accurately represents the seasonal cycle of the hydrological variables. The authors find that most GCMs used by the IPCC overestimate the hydrological cycle compared to observations. They observe some improvement in the simulated hydrological cycle with increased horizontal resolution, which suggests that some of the high-resolution GCMs are better suited for climate change studies over Africa.


2020 ◽  
Vol 14 (12) ◽  
pp. 4299-4322
Author(s):  
Jonathan M. Gregory ◽  
Steven E. George ◽  
Robin S. Smith

Abstract. We have studied the evolution of the Greenland ice sheet under a range of constant climates typical of those projected for the end of the present century using a dynamical ice sheet model (Glimmer) coupled to an atmosphere general circulation model (FAMOUS–ice AGCM). The ice sheet surface mass balance (SMB) is simulated within the AGCM by a multilayer snow scheme from snowfall and surface energy fluxes, including refreezing and dependence on altitude within AGCM grid boxes. Over millennia under any warmer climate, the ice sheet reaches a new steady state, whose mass is correlated with the magnitude of global climate change imposed. If a climate that gives the recently observed SMB were maintained, global-mean sea level rise (GMSLR) would reach 0.5–2.5 m. For any global warming exceeding 3 K, the contribution to GMSLR exceeds 5 m. For the largest global warming considered (about +5 K), the rate of GMSLR is initially 2.7 mm yr−1, and eventually only a small ice cap endures, resulting in over 7 m of GMSLR. Our analysis gives a qualitatively different impression from previous work in that we do not find a sharp threshold warming that divides scenarios in which the ice sheet suffers little reduction from those in which it is mostly lost. The final steady state is achieved by withdrawal from the coast in some places and a tendency for increasing SMB due to enhancement of cloudiness and snowfall over the remaining ice sheet by the effects of topographic change on atmospheric circulation, outweighing the tendency for decreasing SMB from the reduction in surface altitude. If late 20th-century climate is restored after the ice sheet mass has fallen below a threshold of about 4 m of sea level equivalent, it will not regrow to its present extent because the snowfall in the northern part of the island is reduced once the ice sheet retreats from there. In that case, about 2 m of GMSLR would become irreversible. In order to avoid this outcome, anthropogenic climate change must be reversed before the ice sheet has declined to the threshold mass, which would be reached in about 600 years at the highest rate of mass loss within the likely range of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.


Author(s):  
H Huebener ◽  
U Cubasch ◽  
U Langematz ◽  
T Spangehl ◽  
F Niehörster ◽  
...  

Long-term transient simulations are carried out in an initial condition ensemble mode using a global coupled climate model which includes comprehensive ocean and stratosphere components. This model, which is run for the years 1860–2100, allows the investigation of the troposphere–stratosphere interactions and the importance of representing the middle atmosphere in climate-change simulations. The model simulates the present-day climate (1961–2000) realistically in the troposphere, stratosphere and ocean. The enhanced stratospheric resolution leads to the simulation of sudden stratospheric warmings; however, their frequency is underestimated by a factor of 2 with respect to observations. In projections of the future climate using the Intergovernmental Panel on Climate Change special report on emissions scenarios A2, an increased tropospheric wave forcing counteracts the radiative cooling in the middle atmosphere caused by the enhanced greenhouse gas concentration. This leads to a more dynamically active, warmer stratosphere compared with present-day simulations, and to the doubling of the number of stratospheric warmings. The associated changes in the mean zonal wind patterns lead to a southward displacement of the Northern Hemisphere storm track in the climate-change signal.


2009 ◽  
Vol 22 (10) ◽  
pp. 2639-2658 ◽  
Author(s):  
Grant Branstator ◽  
Frank Selten

Abstract A 62-member ensemble of coupled general circulation model (GCM) simulations of the years 1940–2080, including the effects of projected greenhouse gas increases, is examined. The focus is on the interplay between the trend in the Northern Hemisphere December–February (DJF) mean state and the intrinsic modes of variability of the model atmosphere as given by the upper-tropospheric meridional wind. The structure of the leading modes and the trend are similar. Two commonly proposed explanations for this similarity are considered. Several results suggest that this similarity in most respects is consistent with an explanation involving patterns that result from the model dynamics being well approximated by a linear system. Specifically, the leading intrinsic modes are similar to the leading modes of a stochastic model linearized about the mean state of the GCM atmosphere, trends in GCM tropical precipitation appear to excite the leading linear pattern, and the probability density functions (PDFs) of prominent circulation patterns are quasi-Gaussian. There are, on the other hand, some subtle indications that an explanation for the similarity involving preferred states (which necessarily result from nonlinear influences) has some relevance. For example, though unimodal, PDFs of prominent patterns have departures from Gaussianity that are suggestive of a mixture of two Gaussian components. And there is some evidence of a shift in probability between the two components as the climate changes. Interestingly, contrary to the most prominent theory of the influence of nonlinearly produced preferred states on climate change, the centroids of the components also change as the climate changes. This modification of the system’s preferred states corresponds to a change in the structure of its dominant patterns. The change in pattern structure is reproduced by the linear stochastic model when its basic state is modified to correspond to the trend in the general circulation model’s mean atmospheric state. Thus, there is a two-way interaction between the trend and the modes of variability.


Sign in / Sign up

Export Citation Format

Share Document