scholarly journals A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals*

2014 ◽  
Vol 71 (5) ◽  
pp. 1763-1782 ◽  
Author(s):  
Bastiaan van Diedenhoven ◽  
Andrew S. Ackerman ◽  
Brian Cairns ◽  
Ann M. Fridlind

Abstract A parameterization is presented that provides extinction cross section σe, single-scattering albedo ω, and asymmetry parameter g of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, σe is always twice the particle projected area. It is shown that ω is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of g with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and ω are investigated and factors are determined to scale the parameterized g to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 μm, revealing absolute differences with reference calculations of ω and g that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

2016 ◽  
Author(s):  
A. M. Fridlind ◽  
R. Atlas ◽  
B. van Diedenhoven ◽  
J. Um ◽  
G. M. McFarquhar ◽  
...  

Abstract. Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 μm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by ~ 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~ 0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution and g are sensitive to assumed ice properties.


2020 ◽  
Vol 77 (4) ◽  
pp. 1245-1260 ◽  
Author(s):  
Bastiaan van Diedenhoven ◽  
Brian Cairns

Abstract We provide a parameterization of the extinction efficiency, single-scattering albedo, and asymmetry parameter of single ice crystals with any combination of particle volume, projected area, component aspect ratio, and crystal distortion at any wavelength between 0.2 and 100 μm. The parameterization is an extension of the one previously published by van Diedenhoven et al. In addition, the parameterized optical properties are integrated over size distributions yielding bulk extinction efficiencies, single-scattering albedos, and asymmetry parameters for large ranges of effective radii, particle component aspect ratios, and crystal distortion values. The parameterization of single-particle optical properties is evaluated with a reference database. The bulk optical properties are evaluated against the ice model selected for the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 products, for which accurate optical properties are available. Mean absolute errors in parameterized extinction efficiency, asymmetry parameter, and single-scattering albedo are shown to be 0.0272, 0.008 90, and 0.004 68, respectively, for shortwave wavelengths, while they are 0.0641, 0.0368, and 0.0200 in the longwave. Shortwave and longwave asymmetry parameters and single-scattering albedos are shown to vary strongly with particle component aspect ratio and distortion, resulting in substantial variation in shortwave fluxes, but relatively small variations in longwave cloud emissivity. The parameterization and bulk optical properties are made publicly available.


2021 ◽  
Vol 13 (9) ◽  
pp. 1733
Author(s):  
Lan-Hui Sun ◽  
Lei Bi ◽  
Bingqi Yi

Electromagnetic wave scattering by ice particles is commonly modeled by defining representative habits, including droxtals, columns, plates, and aggregates, although actual particles in the atmosphere can be even much more complex. In this study, we examined a superspheroidal approximation method for modeling electromagnetic wave scattering by ice crystals. Superspheroid can be associated with a shape index (SI) defined by the particle volume and average projected area. Corresponding to realistic ice crystals, suitable superspheroid models with the same SI (that means, identical volume and average projected area) and aspect ratio can be identified as surrogates for optical property calculations. We systematically compared the optical properties of ice crystals and superspheroids at 33 microwave bands in the range of 3–640 GHz and at three representative visible or infrared wavelengths (0.66, 2.13, and 11 μm). It was found that the single-scattering properties of compact ice crystal habits and their superspheroidal model particles were quite close. For an aggregate with sparse distribution of elements, a superspheroid model produces relatively large errors because the aspect ratio may not be sufficient to describe a particle shape. However, the optical similarity of a superspheroid and an aggregate is still encouraging. 


2016 ◽  
Vol 16 (11) ◽  
pp. 7251-7283 ◽  
Author(s):  
Ann M. Fridlind ◽  
Rachel Atlas ◽  
Bastiaan van Diedenhoven ◽  
Junshik Um ◽  
Greg M. McFarquhar ◽  
...  

Abstract. Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by  ∼  0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from  ∼ 0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.


2012 ◽  
Vol 29 (1) ◽  
pp. 50-63 ◽  
Author(s):  
Xiaodong Liu ◽  
Shouguo Ding ◽  
Lei Bi ◽  
Ping Yang

Abstract Nonspherical ice crystal optical properties are of fundamental importance to atmospheric radiative transfer through an ice cloud and the remote sensing of its properties. In practice, the optical properties of individual ice crystals need to be integrated over particle size distributions to derive the bulk optical properties of ice clouds. Given a particle size distribution represented in terms of size bins, the conventional approach uses the microphysical and optical properties of ice crystals at the bin centers as approximations to the bin-averaged values. However, errors are incurred when the size bins are large. To reduce the potential errors, a kernel technique is utilized to calculate the bulk optical properties of ice clouds by computing the bin-averaged values instead of using the bin-center values. Comparisons between the solutions based on the conventional method and the kernel technique for different numbers of size bins from in situ measurements demonstrate that the results computed from the kernel technique are more accurate. The present study illustrates that, for a given size distribution, 40 or more size bins should be used to calculate the bulk optical properties of ice clouds by the conventional method. Although the accuracy of bulk-scattering properties can be improved by using fine bin resolutions in the single-scattering property computation, the advantage of using a precomputed database of scattering kernels allows efficient computation of ice cloud bulk optical properties without losing the accuracy.


2019 ◽  
Vol 76 (9) ◽  
pp. 2635-2652 ◽  
Author(s):  
Masanori Saito ◽  
Ping Yang

Abstract A database (TAMUoic2019) of the scattering, absorption, and polarization properties of horizontally oriented hexagonal plates (HOPs) and horizontally oriented hexagonal columns (HOCs) at three wavelengths (355, 532, and 1064 nm) is developed for applications to radiative transfer simulations and remote sensing implementations involving oriented ice crystals. The maximum dimension of oriented ice crystals ranges from 50 to 10 000 μm in 165 discrete size bins. The database accounts for 94 incident directions. The single-scattering properties of oriented ice crystals are computed with the physical-geometric optics method (PGOM), which is consistent with the invariant-imbedding T-matrix method for particles with size parameters larger than approximately 100–150. Note that the accuracy of PGOM increases as the size parameter increases. PGOM computes the two-dimensional phase matrix as a function of scattering polar and azimuth angles, and the phase matrix significantly varies with the incident direction. To derive the bulk optical properties of ice clouds for practical radiative transfer applications, the optical properties of individual HOPs and HOCs are averaged over the probability distribution of the tilting angle of oriented ice crystals based on the use of the TAMUoic2019 database. Simulations of lidar signals associated with ice clouds based on the bulk optical properties indicate the importance of the fraction of oriented ice crystals and the probability distribution of the tilting angle. Simulations of optical phenomena caused by oriented ice crystals demonstrate that the computed single-scattering properties of oriented ice crystals are physically rational.


2020 ◽  
Vol 20 (17) ◽  
pp. 10149-10168 ◽  
Author(s):  
Damon M. Smith ◽  
Marc N. Fiddler ◽  
Rudra P. Pokhrel ◽  
Solomon Bililign

Abstract. An accurate measurement of the optical properties of aerosol is critical for quantifying the effect of aerosol on climate. Uncertainties persist and results of measurements vary significantly. Biomass burning (BB) aerosol has been extensively studied through both field and laboratory environments for North American fuels to understand the changes in optical and chemical properties as a function of aging. There is a need for a wider sampling of fuels from different regions of the world for laboratory studies. This work represents the first such study of the optical and chemical properties of wood fuel samples commonly used for domestic purposes in east Africa. In general, combustion temperature or modified combustion efficiency (MCE) plays a major role in the optical properties of the emitted aerosol. For fuels combusted with MCE of 0.974±0.015, which is referred to as flaming-dominated combustion, the single-scattering albedo (SSA) values were in the range of 0.287 to 0.439, while for fuels combusted with MCE of 0.878±0.008, which is referred to as smoldering-dominated combustion, the SSA values were in the range of 0.66 to 0.769. There is a clear but very small dependence of SSA on fuel type. A significant increase in the scattering and extinction cross section (with no significant change in absorption cross section) was observed, indicating the occurrence of chemistry, even during dark aging for smoldering-dominated combustion. This fact cannot be explained by heterogeneous oxidation in the particle phase, and we hypothesize that secondary organic aerosol formation is potentially happening during dark aging. After 12 h of photochemical aging, BB aerosol becomes highly scattering with SSA values above 0.9, which can be attributed to oxidation in the chamber. Aging studies of aerosol from flaming-dominated combustion were inconclusive due to the very low aerosol number concentration. We also attempted to simulate polluted urban environments by injecting volatile organic compounds (VOCs) and BB aerosol into the chamber, but no distinct difference was observed when compared to photochemical aging in the absence of VOCs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yiru Wang ◽  
Zhe Gao ◽  
Zonghu Han ◽  
Yilin Liu ◽  
Huan Yang ◽  
...  

AbstractLaser heating of gold nanospheres (GNS) is increasingly prevalent in biomedical applications due to tunable optical properties that determine heating efficiency. Although many geometric parameters (i.e. size, morphology) can affect optical properties of individual GNS and their heating, no specific studies of how GNS aggregation affects heating have been carried out. We posit here that aggregation, which can occur within some biological systems, will significantly impact the optical and therefore heating properties of GNS. To address this, we employed discrete dipole approximation (DDA) simulations, Ultraviolet–Visible spectroscopy (UV–Vis) and laser calorimetry on GNS primary particles with diameters (5, 16, 30 nm) and their aggregates that contain 2 to 30 GNS particles. DDA shows that aggregation can reduce the extinction cross-section on a per particle basis by 17–28%. Experimental measurement by UV–Vis and laser calorimetry on aggregates also show up to a 25% reduction in extinction coefficient and significantly lower heating (~ 10%) compared to dispersed GNS. In addition, comparison of select aggregates shows even larger extinction cross section drops in sparse vs. dense aggregates. This work shows that GNS aggregation can change optical properties and reduce heating and provides a new framework for exploring this effect during laser heating of nanomaterial solutions.


Sign in / Sign up

Export Citation Format

Share Document