photothermal heating
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 62)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Anh Duc Phan ◽  
Nguyen K. Ngan ◽  
Do T. Nga ◽  
Nam B. Le ◽  
Chu Viet Ha

Author(s):  
Samantha P Macchi ◽  
Amanda Jalihal ◽  
Nasrin Hooshmand ◽  
Mohd Zubair ◽  
Nabeel Alwan ◽  
...  

Combination nanodrugs are promising therapeutic agents for cancer treatment. However, they often require the use of complex nanovehicles for transportation into the tumor site. Herein, a new class of carrier-free...


2021 ◽  
Vol 12 (1) ◽  
pp. 315
Author(s):  
Zoya Ghorbanishiadeh ◽  
Bojun Zhou ◽  
Morteza Sheibani Karkhaneh ◽  
Rebecca Oehler ◽  
Mark G. Kuzyk

This work is a comprehensive experimental and theoretical study aimed at understanding the photothermal and molecular shape-change contributions to the photomechanical effect of polymers doped with azo dyes. Our prototypical system is the azobenzene dye Disperse Red 1 (DR1) doped into poly (methyl methacrylate) (PMMA) polymer formed into optical fibers. We start by determining the thermo-mechanical properties of the materials with a temperature-dependent stress measurement. The material parameters, so determined, are used in a photothermal heating model—with no adjustable parameters—to predict its contribution. The photothermal heating model predicts the observations, ruling out mechanisms originating in light-induced shape changes of the dopant molecules. The photomechanical tensor response along the two principle axes in the uniaxial approximation is measured and compared with another independent theory of photothermal heating and angular hole burning/reorientation. Again, the results are consistent only with a purely thermal response, showing that effects due to light-induced shape changes of the azo dyes are negligible. The measurements are repeated as a function of polymer chain length and the photomechanical efficiencies determined. We find the results to be mostly chain-length independent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ichiro Tatsuno ◽  
Yuna Niimi ◽  
Makoto Tomita ◽  
Hiroshi Terashima ◽  
Tadao Hasegawa ◽  
...  

AbstractThere is a great demand for novel disinfection technologies to inactivate various pathogenic viruses and bacteria. In this situation, ultraviolet (UVC) disinfection technologies seem to be promising because biocontaminated air and surfaces are the major media for disease transmission. However, UVC is strongly absorbed by human cells and protein components; therefore, there are concerns about damaging plasma components and causing dermatitis and skin cancer. To avoid these concerns, in this study, we demonstrate that the efficient inactivation of bacteria is achieved by visible pulsed light irradiation. The principle of inactivation is based on transient photothermal heating. First, we provide experimental confirmation that extremely high temperatures above 1000 K can be achieved by pulsed laser irradiation. Evidence of this high temperature is directly confirmed by melting gold nanoparticles (GNPs). Inorganic GNPs are used because of their well-established thermophysical properties. Second, we show inactivation behaviour by pulsed laser irradiation. This inactivation behaviour cannot be explained by a simple optical absorption effect. We experimentally and theoretically clarify this inactivation mechanism based on both optical absorption and scattering effects. We find that scattering and absorption play an important role in inactivation because the input irradiation is inherently scattered by the bacteria; therefore, the dose that bacteria feel is reduced. This scattering effect can be clearly shown by a technique that combines stained Escherichia coli and site selective irradiation obtained by a wavelength tunable pulsed laser. By measuring Live/Dead fluorescence microscopy images, we show that the inactivation attained by the transient photothermal heating is possible to instantaneously and selectively kill microorganisms such as Escherichia coli bacteria. Thus, this method is promising for the site selective inactivation of various pathogenic viruses and bacteria in a safe and simple manner.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaoyang Guo ◽  
Jia Liu ◽  
Lingdong Jiang ◽  
Wanjun Gong ◽  
Huixia Wu ◽  
...  

Abstract Background Photothermal therapy (PTT) frequently cause thermal resistance in tumor cells by inducing the heat shock response, limiting its therapeutic effect. Hydrogen sulfide (H2S) with appropriate concentration can reverse the Warburg effect in cancer cells. The combination of PTT with H2S gas therapy is expected to achieve synergistic tumor treatment. Methods Here, sulourea (Su) is developed as a thermosensitive/hydrolysable H2S donor to be loaded into Pd nanocubes through in-depth coordination for construction of the Pd-Su nanomedicine for the first time to achieve photo-controlled H2S release, realizing the effective combination of photothermal therapy and H2S gas therapy. Results The Pd-Su nanomedicine shows a high Su loading capacity (85 mg g−1), a high near-infrared (NIR) photothermal conversion efficiency (69.4%), and NIR-controlled H2S release by the photothermal-triggered hydrolysis of Su. The combination of photothermal heating and H2S produces a strong synergetic effect by H2S-induced inhibition of heat shock response, thereby effectively inhibiting tumor growth. Moreover, high intratumoral accumulation of the Pd-Su nanomedicine after intravenous injection also enables photothermal/photoacoustic dual-mode imaging-guided tumor treatment. Conclusions The proposed NIR-responsive heat/H2S release strategy provides a new approach for effective cancer therapy. Graphic abstract


Author(s):  
A. Camacho de la Rosa ◽  
David Becerril ◽  
Guadalupe Gómez-Farfán ◽  
R. Esquivel-Sirvent

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6634
Author(s):  
Nana Ota ◽  
Tomohiro Miyauchi ◽  
Hiromasa Shimizu

Photothermal heaters are important devices for optical switches and memories based on the thermo-optic/magneto-optic effect and phase change materials. We demonstrated photothermal heating in Si plasmonic waveguides loaded with Co thin films by measuring the resistance change upon inputting transverse-magnetic (TM) mode light. Temperature rise is proportional to the light intensity with clear polarization dependence. The photothermal conversion efficiency was estimated at 36 K/mW and maximum temperature rise was estimated at 221 K at steady state upon the inputting 6.3 mW TM mode light for the 400 nm-wide, 8 µm-long and 189 nm-thick Co film deposited on the Si wire waveguide with 129 nm-thick SiO2 buffer layer. The method to increase the efficiency is discussed based on the experimental and simulation results considering the thickness of the SiO2 buffer layer, Co layer and Si core layer, waveguide width, and wavelength. Local photothermal heaters in this study can be applied to a variety of fields including optical switches/memories without electrical control signals in photonic integrated circuits, on-chip optical sensors, and a lab-on-a-chip in biology, chemistry, and medicine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitry A. Nedosekin ◽  
TsungYen Chen ◽  
Srinivas Ayyadevara ◽  
Vladimir P. Zharov ◽  
Robert J. Shmookler Reis

AbstractAggregation of proteins is a prominent hallmark of virtually all neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Little progress has been made in their treatment to slow or prevent the formation of aggregates by post-translational modification and regulation of cellular responses to misfolded proteins. Here, we introduce a label-free, laser-based photothermal treatment of polyglutamine (polyQ) aggregates in a C. elegans nematode model of huntingtin-like polyQ aggregation. As a proof of principle, we demonstrated that nanosecond laser pulse-induced local photothermal heating can directly disrupt the aggregates so as to delay their accumulation, maintain motility, and extend the lifespan of treated nematodes. These beneficial effects were validated by confocal photothermal, fluorescence, and video imaging. The results obtained demonstrate that our theranostics platform, integrating photothermal therapy without drugs or other chemicals, combined with advanced imaging to monitor photothermal ablation of aggregates, initiates systemic recovery and thus validates the concept of aggregate-disruption treatments for neurodegenerative diseases in humans.


Sign in / Sign up

Export Citation Format

Share Document