scholarly journals Why Do Model Tropical Cyclones Intensify More Rapidly at Low Latitudes?

2015 ◽  
Vol 72 (5) ◽  
pp. 1783-1804 ◽  
Author(s):  
Roger K. Smith ◽  
Gerard Kilroy ◽  
Michael T. Montgomery

Abstract The authors examine the problem of why model tropical cyclones intensify more rapidly at low latitudes. The answer to this question touches on practically all facets of the dynamics and thermodynamics of tropical cyclones. The answer invokes the conventional spin-up mechanism, as articulated in classical and recent work, together with a boundary layer feedback mechanism linking the strength of the boundary layer inflow to that of the diabatic forcing of the meridional overturning circulation. The specific role of the frictional boundary layer in regulating the dependence of the intensification rate on latitude is discussed. It is shown that, even if the tangential wind profile at the top of the boundary layer is held fixed, a simple, steady boundary layer model produces stronger low-level inflow and stronger, more confined ascent out of the boundary layer as the latitude is decreased, similar to the behavior found in a time-dependent, three-dimensional numerical model. In an azimuthally averaged view of the problem, the most prominent quantitative differences between the time-dependent simulations at 10° and 30°N are the stronger boundary layer inflow and the stronger ascent of air exiting the boundary layer, together with the much larger diabatic heating rate and its radial gradient above the boundary layer at the lower latitude. These differences, in conjunction with the convectively induced convergence of absolute angular momentum, greatly surpass the effects of rotational stiffness (inertial stability) and evaporative-wind feedback that have been proposed in some prior explanations.

2019 ◽  
Vol 76 (10) ◽  
pp. 3229-3245 ◽  
Author(s):  
Yuanlong Li ◽  
Yuqing Wang ◽  
Yanluan Lin

Abstract The dynamics of eyewall contraction of tropical cyclones (TCs) has been revisited in this study based on both three-dimensional and axisymmetric simulations and dynamical diagnostics. Because eyewall contraction is closely related to the contraction of the radius of maximum wind (RMW), its dynamics is thus often studied by examining the RMW tendency in previous studies. Recently, Kieu and Stern et al. proposed two different frameworks to diagnose the RMW tendency but had different conclusions. In this study, the two frameworks are evaluated first based on theoretical analysis and idealized numerical simulations. It is shown that the framework of Kieu is a special case of the earlier framework of Willoughby et al. if the directional derivative is applied. An extension of Stern et al.’s approach not only can reproduce but also can predict the RMW tendency. A budget of the azimuthal-mean tangential wind tendency indicates that the contributions by radial and vertical advections to the RMW tendency vary with height. Namely, radial advection dominates the RMW contraction in the lower boundary layer, and vertical advection favors the RMW contraction in the upper boundary layer and lower troposphere. In addition to the curvature, the increase of the radial gradient of horizontal mixing (including the resolved eddy mixing in three dimensions) near the eyewall prohibits eyewall contraction in the lower boundary layer. Besides, the vertical mixing including surface friction also plays an important role in the cessation of eyewall contraction in the lower boundary layer.


2016 ◽  
Vol 73 (2) ◽  
pp. 487-503 ◽  
Author(s):  
Gerard Kilroy ◽  
Roger K. Smith ◽  
Michael T. Montgomery

Abstract The long-term behavior of tropical cyclones in the prototype problem for cyclone intensification on an f plane is examined using a nonhydrostatic, three-dimensional numerical model. After reaching a mature intensity, the model storms progressively decay while both the inner-core size, characterized by the radius of the eyewall, and the size of the outer circulation—measured, for example, by the radius of the gale-force winds—progressively increase. This behavior is explained in terms of a boundary layer control mechanism in which the expansion of the swirling wind in the lower troposphere leads through boundary layer dynamics to an increase in the radii of forced eyewall ascent as well as to a reduction in the maximum tangential wind speed in the layer. These changes are accompanied by changes in the radial and vertical distribution of diabatic heating. As long as the aggregate effects of inner-core convection, characterized by the distribution of diabatic heating, are able to draw absolute angular momentum surfaces inward, the outer circulation will continue to expand. The quantitative effects of latitude on the foregoing processes are investigated also. The study provides new insight into the factors controlling the evolution of the size and intensity of a tropical cyclone. It provides also a plausible, and arguably simpler, explanation for the expansion of the inner core of Hurricane Isabel (2003) and Typhoon Megi (2010) than that given previously.


Author(s):  
Yuqing Wang ◽  
Yuanlong Li ◽  
Jing Xu

AbstractIn this study, the boundary-layer tangential wind budget equation following the radius of maximum wind, together with an assumed thermodynamical quasi-equilibrium boundary layer is used to derive a new equation for tropical cyclone (TC) intensification rate (IR). A TC is assumed to be axisymmetric in thermal wind balance with eyewall convection becoming in moist slantwise neutrality in the free atmosphere above the boundary layer as the storm intensifies as found recently based on idealized numerical simulations. An ad-hoc parameter is introduced to measure the degree of congruence of the absolute angular momentum and the entropy surfaces. The new IR equation is evaluated using results from idealized ensemble full-physics axisymmetric numerical simulations. Results show that the new IR equation can reproduce the time evolution of the simulated TC intensity. The new IR equation indicates a strong dependence of IR on both TC intensity and the corresponding maximum potential intensity (MPI). A new finding is the dependence of TC IR on the square of the MPI in terms of the near-surface wind speed for any given relative intensity. Results from some numerical integrations of the new IR equation also suggest the finite-amplitude nature of TC genesis. In addition, the new IR theory is also supported by some preliminary results based on best-track TC data over the North Atlantic and eastern and western North Pacific. Compared with the available time-dependent theories of TC intensification, the new IR equation can provide a realistic intensity-dependent IR during weak intensity stage as in observations.


2011 ◽  
Vol 139 (6) ◽  
pp. 1762-1784 ◽  
Author(s):  
Sundararaman G. Gopalakrishnan ◽  
Frank Marks ◽  
Xuejin Zhang ◽  
Jian-Wen Bao ◽  
Kao-San Yeh ◽  
...  

Abstract Forecasting intensity changes in tropical cyclones (TCs) is a complex and challenging multiscale problem. While cloud-resolving numerical models using a horizontal grid resolution of 1–3 km are starting to show some skill in predicting the intensity changes in individual cases, it is not clear at this time what may be a reasonable horizontal resolution for forecasting TC intensity changes on a day-to-day-basis. The Experimental Hurricane Weather Research and Forecasting System (HWRFX) was used within an idealized framework to gain a fundamental understanding of the influence of horizontal grid resolution on the dynamics of TC vortex intensification in three dimensions. HWFRX is a version of the National Centers for Environmental Prediction (NCEP) Hurricane Weather Research and Forecasting (HWRF) model specifically adopted and developed jointly at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) and Earth System Research Laboratory (ESRL) for studying the intensity change problem at a model grid resolution of about 3 km. Based on a series of numerical experiments at the current operating resolution of about 9 km and at a finer resolution of about 3 km, it was found that improved resolution had very little impact on the initial spinup of the vortex. An initial axisymmetric vortex with a maximum wind speed of 20 m s−1 rapidly intensified to 50 m s−1 within about 24 h in either case. During the spinup process, buoyancy appears to have had a pivotal influence on the formation of the warm core and the subsequent rapid intensification of the modeled vortex. The high-resolution simulation at 3 km produced updrafts as large as 48 m s−1. However, these extreme events were rare, and this study indicated that these events may not contribute significantly to rapid deepening. Additionally, although the structure of the buoyant plumes may differ at 9- and 3-km resolution, interestingly, the axisymmetric structure of the simulated TCs exhibited major similarities. Specifically, the similarities included a deep inflow layer extending up to about 2 km in height with a tangentially averaged maximum inflow velocity of about 12–15 m s−1, vertical updrafts with an average velocity of about 2 m s−1, and a very strong outflow produced at both resolutions for a mature storm. It was also found in either case that the spinup of the primary circulation occurred not only due to the weak inflow above the boundary layer but also due to the convergence of vorticity within the boundary layer. Nevertheless, the mature phase of the storm’s evolution exhibited significantly different patterns of behavior at 9 and 3 km. While the minimum pressure at the end of 96 h was 934 hPa for the 9-km simulation, it was about 910 hPa for the 3-km run. The maximum tangential wind at that time showed a difference of about 10 m s−1. Several sensitivity experiments related to the initial vortex intensity, initial radius of the maximum wind, and physics were performed. Based on ensembles of simulations, it appears that radial advection of the tangential wind and, consequently, radial flux of vorticity become important forcing terms in the momentum budget of the mature storm. Stronger convergence in the boundary layer leads to a larger transport of moisture fluxes and, subsequently, a stronger storm at higher resolution.


1982 ◽  
Vol 117 ◽  
pp. 211-231 ◽  
Author(s):  
Mostafa A. Foda

An analytical theory is developed to describe how negative pressure, (or ‘mud suction’, as it is sometimes referred to) develops underneath a body as it detaches itself from the ocean bottom. Biot's quasistatic equations of poro-elasticity are used to model the ocean bottom, and a general three-dimensional time-dependent analysis of the problem is worked out first using the boundary-layer approximation recently proposed by Mei and Foda. Then, explicit leading-order analytical solutions are presented for the problems of extrication of slender bodies as well as axisymmetric bodies from the ocean bottom.


Abstract The formation of a plausible secondary eyewall is examined with two principal simulation experiments that differ only in the fixed value of rain fall speed, one with a value of 70 m s−1 (approaching the pseudo-adiabatic limit) that simulates a secondary eyewall, and one with a value of 7 m s−1 that does not simulate a secondary eyewall. Key differences are sought between these idealized three-dimensional simulations. A notable expansion of the lower-tropospheric tangential wind field to approximately 400 km radius is found associated with the precursor period of the secondary eyewall. The wind field expansion is traced to an enhanced vertical mass flux across the 5.25-km height level, which leads, in turn, to enhanced radial inflow in the lower troposphere and above the boundary layer. The inflow spins up the tangential wind outside the primary eyewall via the conventional spin-up mechanism. This amplified tangential wind field is linked to a broad region of outwardly-directed agradient force in the upper boundary layer. Whereas scattered convection is found outside the primary eyewall in both simulations, the agradient force is shown to promote a ring-like organization of this convection when boundary layer convergence occurs in a persistent, localized region of super-gradient winds. The results support prior work highlighting a new model of secondary eyewall formation emphasizing a boundary layer control pathway for initiating the outer eyewall as part of the rotating convection paradigm of tropical cyclone evolution.


1957 ◽  
Vol 2 (1) ◽  
pp. 89-99 ◽  
Author(s):  
M. B. Glauert

If, in a given solution of the boundary layer equations, the position of the wall is varied, then additional solutions of the boundary layer equations may be deduced. The theorem considers the nature of such solution, for the general case of time-dependent three-dimensional compressible flow.Applications of the theorem arise in several different fields, and it is shown that useful quantitative results can often be obtained with the minimum of calculation. In this paper, chief attention is focused on the case of a rotating circular cylinder, and explicit formulae are developed for the skin friction, valid for sufficiently low rotational speeds. The important results which the theorem gives for slip flow have been noted by previous extenions to these previous treatments are made. Other applications of the theorem are briefly mentioned.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Fei Liao ◽  
Ran Su ◽  
Pak-Wai Chan ◽  
Yanbin Qi ◽  
Kai-Kwong Hon

Eleven tropical cyclones that landed in Guangdong Province since 2012 and experienced strengthening or weakening over the offshore area were studied. Since the structure of the tropical cyclone boundary layer significantly influences the variation of the intensity of the cyclone, continuous observations of the wind profile radar at a coastal radar station in Guangdong Province were combined with aircraft observation data of the No. 1604 “Nida” cyclone to analyse the variations in the distributions of the radial wind, tangential wind, and angular momentum in the typhoon boundary layer and the similarities and differences between the boundary layers of the 11 tropical cyclones during the strengthening or weakening of their intensities. The analysis results show that the presence of the supergradient wind and the enhancement effect of the radial inflow play important roles in enhancing the intensity of a tropical cyclone. The observations indicate that when the tangential wind velocity in the maximum wind velocity radius reaches the velocity of the supergradient wind and when the radial inflow either gradually increases towards the centre of the tropical cyclone or gradually covers the entire boundary layer, the angular momentum tends to be shifted towards the centre. At this time, the maximum radial inflow, maximum tangential wind, and maximum angular momentum are in the same height range in the vertical direction. When a strong radial outflow occurs in the boundary layer of a tropical cyclone or the area with maximum wind velocity is located in the air outflow, the angular momentum cannot easily be transported towards the centre of the typhoon. Therefore, the spatial configuration of the three physical quantities will determine future changes in the intensity of tropical cyclones. The scope of the results presented here is limited to the 11 selected cases and suggests extending the analysis to more data.


Sign in / Sign up

Export Citation Format

Share Document