secondary eyewall formation
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 14)

H-INDEX

18
(FIVE YEARS 2)

Abstract The formation of a plausible secondary eyewall is examined with two principal simulation experiments that differ only in the fixed value of rain fall speed, one with a value of 70 m s−1 (approaching the pseudo-adiabatic limit) that simulates a secondary eyewall, and one with a value of 7 m s−1 that does not simulate a secondary eyewall. Key differences are sought between these idealized three-dimensional simulations. A notable expansion of the lower-tropospheric tangential wind field to approximately 400 km radius is found associated with the precursor period of the secondary eyewall. The wind field expansion is traced to an enhanced vertical mass flux across the 5.25-km height level, which leads, in turn, to enhanced radial inflow in the lower troposphere and above the boundary layer. The inflow spins up the tangential wind outside the primary eyewall via the conventional spin-up mechanism. This amplified tangential wind field is linked to a broad region of outwardly-directed agradient force in the upper boundary layer. Whereas scattered convection is found outside the primary eyewall in both simulations, the agradient force is shown to promote a ring-like organization of this convection when boundary layer convergence occurs in a persistent, localized region of super-gradient winds. The results support prior work highlighting a new model of secondary eyewall formation emphasizing a boundary layer control pathway for initiating the outer eyewall as part of the rotating convection paradigm of tropical cyclone evolution.


Author(s):  
Tsz-Kin Lai ◽  
Eric A. Hendricks ◽  
M. K. Yau

AbstractSecondary eyewall formation and the ensuing eyewall replacement cycles may take place in mature tropical cyclones (TCs) during part of their lifetime. A better understanding of the underlying dynamics is beneficial to improving the prediction of TC intensity and structure. Previous studies suggested that the barotropic instability (BI) across the moat (a.k.a. type-2 BI) can make a substantial contribution to the inner eyewall decay through the associated eddy radial transport of absolute angular momentum (AAM). Simultaneously, the type-2 BI can also increase the AAM of the outer eyewall. While the previous studies focused on the early stage of the type-2 BI, this paper explores the long-term effect of the type-2 BI and the underlying processes in forced and unforced shallow water experiments. Under the long-term effect, it will be shown that the inner eyewalls repeatedly weaken and strengthen (while the order is reversed for the outer eyewalls). Sensitivity tests are conducted to examine the sensitivity of the long-term effect of the type-2 BI to different vortex parameters and the strength of the parameterised diabatic heating. Implication of the long-term effect for the intensity changes of the inner and outer eyewalls of real TCs are also discussed.


Author(s):  
Nannan Qin ◽  
Liguang Wu ◽  
Qingyuan Liu

AbstractPrevious studies have focused on the formation and maintenance of spiral rainbands in the secondary eyewall formation (SEF) of tropical cyclones (TCs). However, the evolution of the moat, a region with weak precipitation separating spiral rainbands from the inner eyewall, is also essential for the SEF. In this study, a semi-idealized numerical experiment is conducted to understand the SEF by focusing on the evolution of the moat. In the simulated TC, a secondary eyewall forms around 32 h, and then intensifies and replaces the inner eyewall at 46 h.It is found that the occurrence and subsequent evolution of the moat in the simulated TC are closely associated with the inner-eyewall structure. As the eyewall updraft becomes strong and the eyewall anvil is well developed, the upper-level inflow develops below the eyewall anvil in response to the diabatic warming in the eyewall anvil. The warming-induced inflow causes a drying effect and promotes the sublimation cooling below the anvil, inducing strong subsidence between the inner eyewall and the spiral rainband through the resulting negative buoyancy. Moreover, the resulting subsidence is enhanced by the compensated downward motion in the outer edge of the inner eyewall. Further analysis indicates that the rapidly decreasing vertical shear of environmental wind and the rapid filamentation zone outside the inner eyewall also play important role in the axisymmetrization of the rainband and the moat subsidence. Our results demonstrate that an intense inner eyewall with a wide upper-level anvil is favorable for the SEF in an environment with decreasing vertical wind shear.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 650
Author(s):  
Robert F. Rogers

Recent (past ~15 years) advances in our understanding of tropical cyclone (TC) intensity change processes using aircraft data are summarized here. The focus covers a variety of spatiotemporal scales, regions of the TC inner core, and stages of the TC lifecycle, from preformation to major hurricane status. Topics covered include (1) characterizing TC structure and its relationship to intensity change; (2) TC intensification in vertical shear; (3) planetary boundary layer (PBL) processes and air–sea interaction; (4) upper-level warm core structure and evolution; (5) genesis and development of weak TCs; and (6) secondary eyewall formation/eyewall replacement cycles (SEF/ERC). Gaps in our airborne observational capabilities are discussed, as are new observing technologies to address these gaps and future directions for airborne TC intensity change research.


2021 ◽  
Author(s):  
Nannan Qin ◽  
Liguang Wu ◽  
Qingyuan Liu

Abstract. It has been suggested that the inner eyewall structure may play an important role in the secondary eyewall formation (SEF) of tropical cyclones (TCs). This study is to further examine the role of the inner eyewall structure by comparing two numerical experiments, which were conducted with the same large-scale environment and initial and boundary conditions but different grid sizes. The SEF was simulated in the experiment with the finer grid spacing, but not in the other.Comparing the eyewall structure in the simulated TCs with and without the SEF indicates that the eyewall structure can play an important role in the SEF. For the simulated TC with the SEF, the eyewall is more upright with stronger updrafts, accompanied by a wide eyewall anvil at a higher altitude. Compared to the simulated TC without the SEF, diagnostic analysis reveals that the cooling outside the inner eyewall is induced by the sublimation, melting and evaporation of hydrometeors falling from the eyewall anvil. The cooling also induces upper-level dry, cool inflow below the anvil, prompting the subsidence and moat formation between the inner eyewall and the spiral rainband. In the simulated TC without the SEF, the cooling induced by the falling hydrometeors is significantly reduced and offset by the diabatic warming. There is no upper-level dry inflow below the anvil and no moat formation between the inner eyewall and the spiral rainband. This study suggests that a realistic simulation of the intense eyewall convection is important to the prediction of the SEF in the numerical forecasting model.


2021 ◽  
Vol 78 (1) ◽  
pp. 29-49
Author(s):  
Chau-Lam Yu ◽  
Anthony C. Didlake ◽  
Fuqing Zhang ◽  
Robert G. Nystrom

AbstractThe dynamics of an asymmetric rainband complex leading into secondary eyewall formation (SEF) are examined in a simulation of Hurricane Matthew (2016), with particular focus on the tangential wind field evolution. Prior to SEF, the storm experiences an axisymmetric broadening of the tangential wind field as a stationary rainband complex in the downshear quadrants intensifies. The axisymmetric acceleration pattern that causes this broadening is an inward-descending structure of positive acceleration nearly 100 km wide in radial extent and maximizes in the low levels near 50 km radius. Vertical advection from convective updrafts in the downshear-right quadrant largely contributes to the low-level acceleration maximum, while the broader inward-descending pattern is due to horizontal advection within stratiform precipitation in the downshear-left quadrant. This broad slantwise pattern of positive acceleration is due to a mesoscale descending inflow (MDI) that is driven by midlevel cooling within the stratiform regions and draws absolute angular momentum inward. The MDI is further revealed by examining the irrotational component of the radial velocity, which shows the MDI extending downwind into the upshear-left quadrant. Here, the MDI connects with the boundary layer, where new convective updrafts are triggered along its inner edge; these new upshear-left updrafts are found to be important to the subsequent axisymmetrization of the low-level tangential wind maximum within the incipient secondary eyewall.


2020 ◽  
Vol 77 (7) ◽  
pp. 2349-2374 ◽  
Author(s):  
Stephen R. Guimond ◽  
Paul D. Reasor ◽  
Gerald M. Heymsfield ◽  
Matthew M. McLinden

AbstractThe structure of vortex Rossby waves (VRWs) and their role in the development of a secondary eyewall in Hurricane Matthew (2016) is examined from observations taken during the NOAA Sensing Hazards with Operational Unmanned Technology (SHOUT) field experiment. Radar measurements from ground-based and airborne systems, with a focus on the NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) instrument on the Global Hawk aircraft, revealed the presence of ~12–15-km-wavelength spiral bands breaking from the inner-core eyewall in the downshear-right quadrant. The vorticity characteristics and calculations of the intrinsic phase speeds of the bands are shown to be consistent with sheared VRWs. A new angular momentum budget methodology is presented that allows an understanding of the secondary eyewall development process with narrow-swath radar measurements. Filtering of the governing equations enables explicit insight into the nonlinear dynamics of scale interactions and the role of the VRWs in the storm structure change. The results indicate that the large-scale (scales > 15 km) vertical flux convergence of angular momentum associated with the VRWs dominates the time tendency with smaller effects from the radial flux term. The small-scale (scales ≤ 15 km) vertical term produces weak, but nonnegligible nonlinear forcing of the large scales primarily through the Reynolds and cross-stress components. The projection of the wave kinematics onto the low-wavenumber (0 and 1) fields appears to be the more significant dynamic process. Flight-level observations show secondary peaks in tangential winds in the radial region where the VRW forcing signatures are active, connecting them with the secondary eyewall formation process.


2020 ◽  
Vol 77 (6) ◽  
pp. 2217-2236
Author(s):  
Yi-Fan Wang ◽  
Zhe-Min Tan

Abstract Secondary eyewall formation (SEF) could be considered as the aggregation of a convective-ring coupling with a tangential wind maximum outside the primary eyewall of a tropical cyclone (TC). The dynamics of SEF are investigated using idealized simulations based on a set of triplet experiments, whose differences are only in the initial outer-core wind speed. The triplet experiments indicate that the unbalanced boundary layer (BL) process driven by outer rainbands (ORBs) is essential for the canonical SEF. The developments of a secondary tangential wind maximum and a secondary convective ring are governed by two different pathways, which are well coupled in the canonical SEF. Compared with inner/suppressed rainbands, the downwind stratiform sectors of ORBs drive significant stronger BL convergence at its radially inward side, which fastens up the SEF region and links the two pathways. In the wind-maximum formation pathway, the positive feedback among the BL convergence, supergradient force, and relative vorticity within the BL dominates the spinup of a secondary tangential wind maximum. In the convective-ring formation pathway, the BL convergence contributes to the ascending motion through the frictional-forced updraft and accelerated outflow associated with the supergradient force above the BL. Driven only by inner rainbands, the simulated vortex develops a fake SEF with only the secondary convective ring since the rainband-driven BL convergence is less enhanced and thus fails to maintain the BL positive feedback in the wind-maximum pathway. Therefore, only ORBs can promote the canonical SEF. It also infers that any environmental/physical conditions favorable for the development of ORBs will ultimately contribute to SEF.


Sign in / Sign up

Export Citation Format

Share Document