Reconstructing Sea Level Pressure Variability via a Feature Tracking Approach

2015 ◽  
Vol 72 (1) ◽  
pp. 487-506 ◽  
Author(s):  
Sergey Kravtsov ◽  
I. Rudeva ◽  
Sergey K. Gulev

Abstract The aim of this paper is to quantify the contribution of synoptic transients to the full spectrum of space–time variability of sea level pressure (SLP) in middle latitudes. In previous work by the authors it was shown that tracking cyclones and anticyclones in an idealized atmospheric model allows one to reconstruct a surprisingly large fraction of the model’s variability, including not only synoptic components, but also its large-scale low-frequency component. Motivated by this result, the authors performed tracking of cyclones and anticyclones and estimated cyclone and anticyclone size and geometry characteristics in the observed SLP field using the 1948–2008 NCEP–NCAR reanalysis dataset. The reconstructed synoptic field was then produced via superimposing radially symmetrized eddies moving along their actual observed trajectories. It was found that, similar to earlier results for an idealized model, the synoptic reconstruction so obtained accounts for a major fraction of the full observed SLP variability across a wide range of time scales, from synoptic to those associated with the low-frequency variability (LFV). The synoptic reconstruction technique developed in this study helps elucidate connections between the synoptic eddies and LFV defined via more traditional spatiotemporal filtering. In particular, we found that the dominant variations in the position of the zonal-mean midlatitude jet are synonymous with random ultralow-frequency redistributions of cyclone and anticyclone trajectories and, hence, is inseparable of that in the storm-track statistics.

Ocean Science ◽  
2018 ◽  
Vol 14 (6) ◽  
pp. 1491-1501 ◽  
Author(s):  
Thomas Frederikse ◽  
Theo Gerkema

Abstract. Seasonal deviations from annual-mean sea level in the North Sea region show a large low-frequency component with substantial variability at decadal and multi-decadal timescales. In this study, we quantify low-frequency variability in seasonal deviations from annual-mean sea level and look for drivers of this variability. The amplitude, as well as the temporal evolution of this multi-decadal variability shows substantial variations over the North Sea region, and this spatial pattern is similar to the well-known pattern of the influence of winds and pressure changes on sea level at higher frequencies. The largest low-frequency signals are found in the German Bight and along the Norwegian coast. We find that the variability is much stronger in winter and autumn than in other seasons and that this winter and autumn variability is predominantly driven by wind and sea-level pressure anomalies which are related to large-scale atmospheric patterns. For the spring and summer seasons, this atmospheric forcing explains a smaller fraction of the observed variability. Large-scale atmospheric patterns have been derived from a principal component analysis of sea-level pressure. The first principal component of sea-level pressure over the North Atlantic Ocean, which is linked to the North Atlantic Oscillation (NAO), explains the largest fraction of winter-mean variability for most stations, while for some stations, the variability consists of a combination of multiple principal components. The low-frequency variability in season-mean sea level can manifest itself as trends in short records of seasonal sea level. For multiple stations around the North Sea, running-mean 40-year trends for autumn and winter sea level often exceed the long-term trends in annual mean sea level, while for spring and summer, the seasonal trends have a similar order of magnitude as the annual-mean trends. Removing the variability explained by atmospheric variability vastly reduces the seasonal trends, especially in winter and autumn.


2018 ◽  
Author(s):  
Thomas Frederikse ◽  
Theo Gerkema

Abstract. Seasonal deviations from annual-mean sea level in the North Sea region show a large low-frequency component with substantial variability at decadal and multi-decadal time scales. In this study, we quantify low-frequency seasonal variations from annual-mean sea level and look for drivers of this variability. The amplitude, as well as the temporal evolution of this multi-decadal variability shows substantial variations over the North Sea region, and this spatial pattern is similar to the well-known pattern of the influence of winds and pressure changes on sea level on higher frequencies. The largest low-frequency signals are found in the German Bight and along the Norwegian coast. We find that the variability is much stronger in winter and autumn than in other seasons, and that this winter and autumn variability is predominantly driven by wind and sea-level pressure anomalies which have their cause in large-scale atmospheric patterns. For the spring and summer seasons, only a small fraction of the observed variability can be explained by local and large-scale atmospheric changes. Large-scale atmospheric patterns have been derived from a principal component analysis of sea-level pressure. The first principal component of sea-level pressure over the North Atlantic Ocean, which is linked to the North Atlantic Oscillation (NAO), explains the largest fraction of winter-mean variability for most stations, while for some stations, the variability consists of a combination of multiple principal components. The low-frequency variability in season-mean sea level can manifest itself as trends in short records of seasonal sea level. For multiple stations around the North Sea, running-mean 40-year trends for autumn and winter sea level often exceed the long-term trends in annual mean sea level, while for spring and summer, the seasonal trends have a similar order of magnitude as the annual-mean trends. Removing the variability explained by atmospheric variability vastly reduces the seasonal trends, especially in winter and autumn.


2006 ◽  
Vol 19 (12) ◽  
pp. 2717-2742 ◽  
Author(s):  
T. J. Ansell ◽  
P. D. Jones ◽  
R. J. Allan ◽  
D. Lister ◽  
D. E. Parker ◽  
...  

Abstract The development of a daily historical European–North Atlantic mean sea level pressure dataset (EMSLP) for 1850–2003 on a 5° latitude by longitude grid is described. This product was produced using 86 continental and island stations distributed over the region 25°–70°N, 70°W–50°E blended with marine data from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS). The EMSLP fields for 1850–80 are based purely on the land station data and ship observations. From 1881, the blended land and marine fields are combined with already available daily Northern Hemisphere fields. Complete coverage is obtained by employing reduced space optimal interpolation. Squared correlations (r 2) indicate that EMSLP generally captures 80%–90% of daily variability represented in an existing historical mean sea level pressure product and over 90% in modern 40-yr European Centre for Medium-Range Weather Forecasts Re-Analyses (ERA-40) over most of the region. A lack of sufficient observations over Greenland and the Middle East, however, has resulted in poorer reconstructions there. Error estimates, produced as part of the reconstruction technique, flag these as regions of low confidence. It is shown that the EMSLP daily fields and associated error estimates provide a unique opportunity to examine the circulation patterns associated with extreme events across the European–North Atlantic region, such as the 2003 heat wave, in the context of historical events.


2008 ◽  
Vol 21 (9) ◽  
pp. 1979-1997 ◽  
Author(s):  
Megan E. Linkin ◽  
Sumant Nigam

Abstract The North Pacific Oscillation (NPO) in sea level pressure and its upper-air geopotential height signature, the west Pacific (WP) teleconnection pattern, constitute a prominent mode of winter midlatitude variability, the NPO/WP. Its mature-phase expression is identified from principal component analysis of monthly sea level pressure variability as the second leading mode just behind the Pacific–North American variability pattern. NPO/WP variability, primarily on subseasonal time scales, is characterized by a large-scale meridional dipole in SLP and geopotential height over the Pacific and is linked to meridional movements of the Asian–Pacific jet and Pacific storm track modulation. The hemispheric height anomalies at upper levels resemble the climatological stationary wave pattern attributed to transient eddy forcing. The NPO/WP divergent circulation is thermal wind restoring, pointing to independent forcing of jet fluctuations. Intercomparison of sea level pressure, geopotential height, and zonal wind anomaly structure reveals that NPO/WP is a basin analog of the NAO, which is not surprising given strong links to storm track variability in both cases. The NPO/WP variability is influential: its impact on Alaskan, Pacific Northwest, Canadian, and U.S. winter surface air temperatures is substantial—more than that of PNA or ENSO. It is likewise more influential on the Pacific Northwest, western Mexico, and south-central Great Plains winter precipitation. Finally, and perhaps, most importantly, NPO/WP is strongly linked to marginal ice zone variability of the Arctic seas with an influence that surpasses that of other Pacific modes. Although NPO/WP variability and impacts have not been as extensively analyzed as its Pacific cousins (PNA, ENSO), it is shown to be more consequential for Arctic sea ice and North American winter hydroclimate.


2020 ◽  
Author(s):  
Clemens Spensberger ◽  
Thomas Spengler

<p>Jets in the upper troposphere constitute a cornerstone of both synoptic meteorology and climate dynamics, thus providing a direct link between weather and mid-latitude climate variability. Conventionally, jet variability is mostly inferred indirectly through the variability of geopotential or sea-level pressure. Here we use a feature-based jet detection and present a global climatology of upper tropospheric jets as well as their variability for ocean sectors in both Hemispheres. The jet streams on both hemispheres are found to spiral poleward, featuring a continuous transition from subtropical to eddy-driven jets. Most intrinsic patterns of jet variability represent a changeover from a meridional shifting type variability to a pulsing-type variability, or vice-versa, across each ocean basin.</p><p>For the Southern Hemisphere, we find considerable discrepancies between geopotential and jet-based variability. Specifically, we show that SAM cannot be interpreted in terms of mid-latitude variability, as SAM merely modulates the most poleward part of the cyclone tracks and only marginally influences the distribution of other weather-related features of the storm track (e.g., position of jet axes and Rossby wave breaking). Instead, SAM emerges as the leading pattern of geopotential variability due to strong correlations of sea-level pressure around the Antarctic continent. Considering sector-specific variability pattern, we identify modes of consistent geopotential and jet variability in the South Pacific, and, to a lesser extent, the South Indian Ocean. In the South Pacific the leading mode of variability points towards NAO-like variability.</p>


2013 ◽  
Vol 58 (2) ◽  
pp. 310-327 ◽  
Author(s):  
David Lavers ◽  
Christel Prudhomme ◽  
David M. Hannah

2008 ◽  
Vol 95 (1-2) ◽  
pp. 183-196 ◽  
Author(s):  
N. Tartaglione ◽  
M. Maugeri ◽  
F. Dalan ◽  
M. Brunetti ◽  
T. Nanni ◽  
...  

2009 ◽  
Vol 22 (5) ◽  
pp. 1174-1192 ◽  
Author(s):  
Sumant Nigam ◽  
Steven C. Chan

Abstract This study revisits the question posed by Hoskins on why the Northern Hemisphere Pacific sea level pressure (SLP) anticyclone is strongest and maximally extended in summer when the Hadley cell descent in the northern subtropics is the weakest. The paradoxical evolution is revisited because anticyclone buildup to the majestic summer structure is gradual, spread evenly over the preceding 4–6 months, and not just confined to the monsoon-onset period, which is interesting, as monsoons are posited to be the cause of the summer vigor of the anticyclone. Anticyclone buildup is moreover found focused in the extratropics, not the subtropics, where SLP seasonality is shown to be much weaker, generating a related paradox within the context of the Hadley cell’s striking seasonality. Showing this seasonality to arise from, and thus represent, remarkable descent variations in the Asian monsoon sector, but not over the central-eastern ocean basins, leads to the resolution of this paradox. Evolution of other prominent anticyclones is analyzed to critique the development mechanisms: the Azores high evolves like the Pacific one, but without a monsoon to its immediate west. The Mascarene high evolves differently, peaking in austral winter. Monsoons are not implicated in both cases. Diagnostic modeling of seasonal circulation development in the Pacific sector concludes this inquiry. Of the three forcing regions examined, the Pacific midlatitudes are found to be the most influential, accounting for over two-thirds of the winter-to-summer SLP development in the extratropics (6–8 hPa), with the bulk coming from the abatement of winter storm-track heating and transients. The Asian monsoon contribution (2–3 hPa) is dominant in the Pacific (and Atlantic) subtropics. The modeling results resonate with observational findings and attest to the demise of winter storm tracks as the principal cause of the summer vigor of the Pacific anticyclone.


2015 ◽  
Vol 12 (2) ◽  
pp. 403-447
Author(s):  
N. Tim ◽  
E. Zorita ◽  
B. Hünicke

Abstract. Detecting the atmospheric drivers of the Benguela Upwelling Systems is essential to understand its present variability and its past and future changes. We present a statistical analysis of an ocean-only simulation driven by observed atmospheric fields over the last decades with the aim of identifying the large-scale atmospheric drivers of upwelling variability and trends. The simulation is found to reproduce well the seasonal cycle of upwelling intensity, with a maximum in the June-to-August season in North Benguela and in the December-to-February season in South Benguela. The statistical analysis of the interannual variability of upwelling focuses on its relationship to atmospheric variables (sea level pressure, 10 m-wind, wind stress). The relationship between upwelling and the atmospheric variables differ somewhat in the two regions, but generally, the correlation patterns reflect the common atmospheric pattern favoring upwelling: southerly wind/wind stress, strong subtropical anticyclone, and an ocean-land sea level pressure gradient. In addition, the statistical link between upwelling and large-scale climate variability modes was analyzed. The El Niño Southern Oscillation and the Antarctic Oscillation exert some influence on austral summer upwelling velocities in South Benguela. The decadal evolution and the long-term trends of upwelling and of ocean-minus-land air pressure gradient do not agree with Bakun's hypothesis that anthropogenic climate change should generally intensify coastal upwelling.


Sign in / Sign up

Export Citation Format

Share Document