scholarly journals The Influences of Boundary Layer Mixing and Cloud-Radiative Forcing on Tropical Cyclone Size

2017 ◽  
Vol 74 (4) ◽  
pp. 1273-1292 ◽  
Author(s):  
Yizhe Peggy Bu ◽  
Robert G. Fovell ◽  
Kristen L. Corbosiero

Abstract Tropical cyclone (TC) size is an important factor directly and indirectly influencing track, intensity, and related hazards, such as storm surge. Using a semi-idealized version of the operational Hurricane Weather Research and Forecasting Model (HWRF), the authors show that both enabling cloud-radiative forcing (CRF) and enhancing planetary boundary layer (PBL) vertical mixing can encourage wider storms by enhancing TC outer-core convective activity. While CRF acts primarily above the PBL, eddy mixing moistens the boundary layer from below, both making peripheral convection more likely. Thus, these two processes can cooperate and compete, making their influences difficult to deconvolve and complicating the evaluation of model physics improvements, especially since the sensitivity to both decreases as the environment becomes less favorable. Further study shows not only the magnitude of the eddy mixing coefficient but also the shape of it can determine the TC size and structure.

2015 ◽  
Vol 15 (11) ◽  
pp. 16111-16139 ◽  
Author(s):  
L. Wu ◽  
H. Su ◽  
R. G. Fovell ◽  
T. J. Dunkerton ◽  
Z. Wang ◽  
...  

Abstract. The impacts of environmental moisture on the intensification of a tropical cyclone (TC) are investigated in the Weather Research and Forecasting (WRF) model, with a focus on the azimuthal asymmetry of the moisture impacts. A series of sensitivity experiments with varying moisture perturbations in the environment are conducted and the Marsupial Paradigm framework is employed to understand the different moisture impacts. We find that modification of environmental moisture has insignificant impacts on the storm in this case unless it leads to convective activity in the environment, which deforms the quasi-Lagrangian boundary of the storm. By facilitating convection and precipitation outside the storm, enhanced environmental moisture ahead of the northwestward-moving storm induces a dry air intrusion to the inner core and limits TC intensification. However, increased moisture in the rear quadrants favors intensification by providing more moisture to the inner core and promoting storm symmetry, with primary contributions coming from moisture increase in the boundary layer. The different impacts of environmental moisture on TC intensification are governed by the relative locations of moisture perturbations and their interactions with the storm Lagrangian structure.


2014 ◽  
Vol 71 (5) ◽  
pp. 1644-1662 ◽  
Author(s):  
Yizhe Peggy Bu ◽  
Robert G. Fovell ◽  
Kristen L. Corbosiero

Abstract The authors demonstrate how and why cloud–radiative forcing (CRF), the interaction of hydrometeors with longwave and shortwave radiation, can influence tropical cyclone structure through “semi idealized” integrations of the Hurricane Weather Research and Forecasting model (HWRF) and an axisymmetric cloud model. Averaged through a diurnal cycle, CRF consists of pronounced cooling along the anvil top and weak warming through the cloudy air, which locally reverses the large net cooling that occurs in the troposphere under clear-sky conditions. CRF itself depends on the microphysics parameterization and represents one of the major reasons why simulations can be sensitive to microphysical assumptions. By itself, CRF enhances convective activity in the tropical cyclone’s outer core, leading to a wider eye, a broader tangential wind field, and a stronger secondary circulation. This forcing also functions as a positive feedback, assisting in the development of a thicker and more radially extensive anvil than would otherwise have formed. These simulations clearly show that the weak (primarily longwave) warming within the cloud anvil is the major component of CRF, directly forcing stronger upper-tropospheric radial outflow as well as slow, yet sustained, ascent throughout the outer core. In particular, this ascent leads to enhanced convective heating, which in turn broadens the wind field, as demonstrated with dry simulations using realistic heat sources. As a consequence, improved tropical cyclone forecasting in operational models may depend on proper representation of cloud–radiative processes, as they can strongly modulate the size and strength of the outer wind field that can potentially influence cyclone track as well as the magnitude of the storm surge.


2016 ◽  
Vol 56 ◽  
pp. 11.1-11.27 ◽  
Author(s):  
Robert G. Fovell ◽  
Yizhe Peggy Bu ◽  
Kristen L. Corbosiero ◽  
Wen-wen Tung ◽  
Yang Cao ◽  
...  

Abstract The authors survey a series of modeling studies that have examined the influences that cloud microphysical processes can have on tropical cyclone (TC) motion, the strength and breadth of the wind field, inner-core diabatic heating asymmetries, outer-core convective activity, and the characteristics of the TC anvil cloud. These characteristics are sensitive to the microphysical parameterization (MP) in large part owing to the cloud-radiative forcing (CRF), the interaction of hydrometeors with radiation. The most influential component of CRF is that due to absorption and emission of longwave radiation in the anvil, which via gentle lifting directly encourages the more extensive convective activity that then leads to a radial expansion of the TC wind field. On a curved Earth, the magnitude of the outer winds helps determine the speed and direction of TC motion via the beta drift. CRF also influences TC motion by determining how convective asymmetries develop in the TC inner core. Further improvements in TC forecasting may require improved understanding and representation of cloud-radiative processes in operational models, and more comprehensive comparisons with observations are clearly needed.


2020 ◽  
Author(s):  
mengjuan liu ◽  
Xu Zhang

<p>A new scale-adaptive three-dimensional (3D) turbulent kinetic energy (TKE) subgrid mixing scheme is developed using the Advanced Research version of the Weather Research and Forecasting Model (WRF-ARW) to address the gray-zone problem in the parameterization of subgrid turbulent mixing. This scheme is based on the full 3D TKE prognostic equation and combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework.</p><p>A series of real tropical cyclone(TC) simulations with varying horizontal resolutions from 9km to 1km are carried out to compare the performance of the 3D mixing scheme and the conventional 1D planetary boundary layer (PBL) schemes to the observations, including conventional ones such as radiosonde and surface synoptic observations, as well as intensive ones obtained during the landfall of TC, such as mobile boundary layer wind profiler and Dual-pol Doppler Radar. This study aims to determine if the new scheme performs appropriate on TC simulation, and to evaluate the sensitivity of TC simulation to boundary layer schemes.</p>


Author(s):  
Alessio Golzio ◽  
Silvia Ferrarese ◽  
Claudio Cassardo ◽  
Gugliemina Adele Diolaiuti ◽  
Manuela Pelfini

AbstractWeather forecasts over mountainous terrain are challenging due to the complex topography that is necessarily smoothed by actual local-area models. As complex mountainous territories represent 20% of the Earth’s surface, accurate forecasts and the numerical resolution of the interaction between the surface and the atmospheric boundary layer are crucial. We present an assessment of the Weather Research and Forecasting model with two different grid spacings (1 km and 0.5 km), using two topography datasets (NASA Shuttle Radar Topography Mission and Global Multi-resolution Terrain Elevation Data 2010, digital elevation models) and four land-cover-description datasets (Corine Land Cover, U.S. Geological Survey land-use, MODIS30 and MODIS15, Moderate Resolution Imaging Spectroradiometer land-use). We investigate the Ortles Cevadale region in the Rhaetian Alps (central Italian Alps), focusing on the upper Forni Glacier proglacial area, where a micrometeorological station operated from 28 August to 11 September 2017. The simulation outputs are compared with observations at this micrometeorological station and four other weather stations distributed around the Forni Glacier with respect to the latent heat, sensible heat and ground heat fluxes, mixing-layer height, soil moisture, 2-m air temperature, and 10-m wind speed. The different model runs make it possible to isolate the contributions of land use, topography, grid spacing, and boundary-layer parametrizations. Among the considered factors, land use proves to have the most significant impact on results.


Author(s):  
Timothy W. Juliano ◽  
Branko Kosović ◽  
Pedro A. Jiménez ◽  
Masih Eghdami ◽  
Sue Ellen Haupt ◽  
...  

AbstractGenerating accurate weather forecasts of planetary boundary layer (PBL) properties is challenging in many geographical regions, oftentimes due to complex topography or horizontal variability in, for example, land characteristics. While recent advances in high-performance computing platforms have led to an increase in the spatial resolution of numerical weather prediction (NWP) models, the horizontal grid cell spacing (Δ x) of many regional-scale NWP models currently fall within or are beginning to approach the gray zone (i.e., Δ x ≈ 100 – 1000 m). At these grid cell spacings, three-dimensional (3D) effects are important, as the most energetic turbulent eddies are neither fully parameterized (as in traditional mesoscale simulations) nor fully resolved [as in traditional large eddy simulations (LES)]. In light of this modeling challenge, we have implemented a 3D PBL parameterization for high-resolution mesoscale simulations using the Weather Research and Forecasting model. The PBL scheme, which is based on the algebraic model developed by Mellor and Yamada, accounts for the 3D effects of turbulence by calculating explicitly the momentum, heat, and moisture flux divergences in addition to the turbulent kinetic energy. In this study, we present results from idealized simulations in the gray zone that illustrate the benefit of using a fully consistent turbulence closure framework under convective conditions. While the 3D PBL scheme reproduces the evolution of convective features more appropriately than the traditional 1D PBL scheme, we highlight the need to improve the turbulent length scale formulation.


Author(s):  
Rong Fei ◽  
Yuqing Wang

AbstractThe first successful simulation of tropical cyclone (TC) intensification was achieved with a three-layer model, often named the Ooyama-type three-layer model, which consists of a slab boundary layer and two shallow water layers above. Later studies showed that the use of a slab boundary layer would produce unrealistic boundary layer wind structure and too strong eyewall updraft at the top of TC boundary layer and thus simulate unrealistically rapid intensification compared to the use of a height-parameterized boundary layer. To fully consider the highly height-dependent boundary layer dynamics in the Ooyama-type three-layer model, this study replaced the slab boundary layer with a multilevel boundary layer in the Ooyama-type model and used it to conduct simulations of TC intensification and also compared the simulation with that from the model version with a slab boundary layer. Results show that compared with the simulation with a slab boundary layer, the use of a multilevel boundary layer can greatly improve simulations of the boundary-layer wind structure and the strength and radial location of eyewall updraft, and thus more realistic intensification rate due to better treatments of the surface layer processes and the nonlinear advection terms in the boundary layer. Sensitivity of the simulated TCs to the model configuration and to both horizontal and vertical mixing lengths, sea surface temperature, the Coriolis parameter, and the initial TC vortex structure are also examined. The results demonstrate that this new model can reproduce various sensitivities comparable to those found in previous studies using fully physics models.


2017 ◽  
Vol 145 (6) ◽  
pp. 2343-2361 ◽  
Author(s):  
Feimin Zhang ◽  
Zhaoxia Pu ◽  
Chenghai Wang

Abstract After a hurricane makes landfall, its evolution is strongly influenced by its interaction with the planetary boundary layer (PBL) over land. In this study, a series of numerical experiments are performed to examine the effects of boundary layer vertical mixing on hurricane simulations over land using a research version of the NCEP Hurricane Weather Research and Forecasting (HWRF) Model with three landfalling hurricane cases. It is found that vertical mixing in the PBL has a strong influence on the simulated hurricane evolution. Specifically, strong vertical mixing has a positive impact on numerical simulations of hurricanes over land, with better track, intensity, synoptic flow, and precipitation simulations. In contrast, weak vertical mixing leads to the strong hurricanes over land. Diagnoses of the thermodynamic and dynamic structures of hurricane vortices further suggest that the strong vertical mixing in the PBL could cause a decrease in the vertical wind shear and an increase in the vertical gradient of virtual potential temperature. As a consequence, these changes destroy the turbulence kinetic energy in the hurricane boundary layer and thus stabilize the hurricane boundary layer and limit its maintenance over land.


2019 ◽  
Vol 19 (19) ◽  
pp. 12431-12454 ◽  
Author(s):  
Keith M. Hines ◽  
David H. Bromwich ◽  
Sheng-Hung Wang ◽  
Israel Silber ◽  
Johannes Verlinde ◽  
...  

Abstract. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) provided a highly detailed set of remote-sensing and surface observations to study Antarctic clouds and surface energy balance, which have received much less attention than for the Arctic due to greater logistical challenges. Limited prior Antarctic cloud observations have slowed the progress of numerical weather prediction in this region. The AWARE observations from the West Antarctic Ice Sheet (WAIS) Divide during December 2015 and January 2016 are used to evaluate the operational forecasts of the Antarctic Mesoscale Prediction System (AMPS) and new simulations with the Polar Weather Research and Forecasting Model (WRF) 3.9.1. The Polar WRF 3.9.1 simulations are conducted with the WRF single-moment 5-class microphysics (WSM5C) used by the AMPS and with newer generation microphysics schemes. The AMPS simulates few liquid clouds during summer at the WAIS Divide, which is inconsistent with observations of frequent low-level liquid clouds. Polar WRF 3.9.1 simulations show that this result is a consequence of WSM5C. More advanced microphysics schemes simulate more cloud liquid water and produce stronger cloud radiative forcing, resulting in downward longwave and shortwave radiation at the surface more in agreement with observations. Similarly, increased cloud fraction is simulated with the more advanced microphysics schemes. All of the simulations, however, produce smaller net cloud fractions than observed. Ice water paths vary less between the simulations than liquid water paths. The colder and drier atmosphere driven by the Global Forecast System (GFS) initial and boundary conditions for AMPS forecasts produces lesser cloud amounts than the Polar WRF 3.9.1 simulations driven by ERA-Interim.


Sign in / Sign up

Export Citation Format

Share Document