scholarly journals The Finite-Amplitude Evolution of Mixed Kelvin–Rossby Wave Instability and Equatorial Superrotation in a Shallow-Water Model and an Idealized GCM

2018 ◽  
Vol 75 (7) ◽  
pp. 2299-2316 ◽  
Author(s):  
Pablo Zurita-Gotor ◽  
Isaac M. Held

Abstract An instability involving the resonant interaction of a Rossby wave and a Kelvin wave has been proposed to drive equatorial superrotation in planetary atmospheres with a substantially smaller radius or a smaller rotation rate than Earth, that is, with a large thermal Rossby number. To pursue this idea, this paper investigates the equilibration mechanism of Kelvin–Rossby instability by simulating the unforced initial-value problem in a shallow-water model and in a multilevel primitive equation model. Although the instability produces equatorward momentum fluxes in both models, only the multilevel model is found to superrotate. It is argued that the shortcoming of the shallow-water model is due to its difficulty in representing Kelvin wave breaking and dissipation, which is crucial for accelerating the flow in the tropics. In the absence of dissipation, the zonal momentum fluxed into the tropics is contained in the eddy contribution to the mass-weighted zonal wind rather than the zonal-mean zonal flow itself. In the shallow-water model, the zonal-mean zonal flow is only changed by the eddy potential vorticity flux, which is very small in our flow in the tropics and can only decelerate the flow in the absence of external vorticity stirring.

2011 ◽  
Vol 687 ◽  
pp. 194-208 ◽  
Author(s):  
Andrew McC. Hogg ◽  
William K. Dewar ◽  
Pavel Berloff ◽  
Marshall L. Ward

AbstractThe interaction of a dipolar vortex with topography is examined using a combination of analytical solutions and idealized numerical models. It is shown that an anticyclonic vortex may generate along-topography flow with sufficient speeds to excite hydraulic control with respect to local Kelvin waves. A critical condition for Kelvin wave hydraulic control is found for the simplest case of a 1.5-layer shallow water model. It is proposed that in the continuously stratified case this mechanism may allow an interaction between low mode vortices and higher mode Kelvin waves, thereby generating rapidly converging isopycnals and hydraulic jumps. Thus, Kelvin wave hydraulic control may contribute to the flux of energy from mesoscale to smaller, unbalanced, scales of motion in the ocean.


2021 ◽  
Vol 926 ◽  
Author(s):  
Jacques Vanneste

The response of a semi-infinite ocean to a slowly travelling atmospheric perturbation crossing the coast provides a simple example of the breakdown of nearly geostrophic balance induced by a boundary. We examine this response in the linear shallow-water model at small Rossby number $\varepsilon \ll 1$ . Using matched asymptotics, we show that a long Kelvin wave, with $O(\varepsilon ^{-1})$ length scale and $O(\varepsilon )$ amplitude relative to quasi-geostrophic response, is generated as the perturbation crosses the coast. Accounting for this Kelvin wave restores the conservation of mass that is violated in the quasi-geostrophic approximation.


2020 ◽  
Vol 32 (12) ◽  
pp. 124117
Author(s):  
M. W. Harris ◽  
F. J. Poulin ◽  
K. G. Lamb

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2054
Author(s):  
Naoki Kuroda ◽  
Katsuhide Yokoyama ◽  
Tadaharu Ishikawa

Our group has studied the spatiotemporal variation of soil and water salinity in an artificial salt marsh along the Arakawa River estuary and developed a practical model for predicting soil salinity. The salinity of the salt marsh and the water level of a nearby channel were measured once a month for 13 consecutive months. The vertical profile of the soil salinity in the salt marsh was measured once monthly over the same period. A numerical flow simulation adopting the shallow water model faithfully reproduced the salinity variation in the salt marsh. Further, we developed a soil salinity model to estimate the soil salinity in a salt marsh in Arakawa River. The vertical distribution of the soil salinity in the salt marsh was uniform and changed at almost the same time. The hydraulic conductivity of the soil, moreover, was high. The uniform distribution of salinity and high hydraulic conductivity could be explained by the vertical and horizontal transport of salinity through channels burrowed in the soil by organisms. By combining the shallow water model and the soil salinity model, the soil salinity of the salt marsh was well reproduced. The above results suggest that a stable brackish ecotone can be created in an artificial salt marsh using our numerical model as a design tool.


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


Sign in / Sign up

Export Citation Format

Share Document