scholarly journals Dynamical Roles of Mixed Rossby–Gravity Waves in Driving Convective Initiation and Propagation of the Madden–Julian Oscillation: General Views

2020 ◽  
Vol 77 (12) ◽  
pp. 4211-4231
Author(s):  
Daisuke Takasuka ◽  
Masaki Satoh

AbstractMotivated by the previous case study, this work shows that dynamical variations of mixed Rossby–gravity waves with tropical depression–type circulations (MRGTDs) are possible drivers of convective initiation and propagation of the Madden–Julian oscillation (MJO) by performing statistical analysis. MJO events initiated in the Indian Ocean (IO) in boreal winter are objectively identified solely using outgoing longwave radiation data. The lagged-composite analysis of detected MJO events demonstrates that MJO convection is initiated in the southwestern IO (SWIO), where strong MRGTD–convection coupling is statistically found. Further classification of MJO cases in terms of intraseasonal convection and MRGTD activities in the SWIO suggests that 26 of 47 cases are related to more enhanced MRGTDs, although they can also be secondarily affected by Kelvin waves. For those MRGTD-enhanced MJO events, MJO convective initiation is primarily triggered by low-level MRGTD circulations that develop via the enhancement of downward energy dispersion in accordance with upper-tropospheric baroclinic conversion. This is supported by the modulation of MRGTD structure associated with zonal wave contraction due to upper-tropospheric zonal convergence, and plentiful moisture advected into the western IO. Following this MRGTD-induced MJO triggering and midtropospheric premoistening in the IO contributed by MRGTD shallow circulations as well as intraseasonal winds during the MJO-suppressed phase, low-level MRGTD winds with eastward group velocity successively trigger convection to the east, which helps MJO convective propagation over the IO. The interannual atmospheric variability may affect whether the presented MRGTD-related processes are effective or not.

2008 ◽  
Vol 136 (6) ◽  
pp. 1940-1956 ◽  
Author(s):  
Xianan Jiang ◽  
Duane E. Waliser ◽  
Matthew C. Wheeler ◽  
Charles Jones ◽  
Myong-In Lee ◽  
...  

Abstract Motivated by an attempt to augment dynamical models in predicting the Madden–Julian oscillation (MJO), and to provide a realistic benchmark to those models, the predictive skill of a multivariate lag-regression statistical model has been comprehensively explored in the present study. The predictors of the benchmark model are the projection time series of the leading pair of EOFs of the combined fields of equatorially averaged outgoing longwave radiation (OLR) and zonal winds at 850 and 200 hPa, derived using the approach of Wheeler and Hendon. These multivariate EOFs serve as an effective filter for the MJO without the need for bandpass filtering, making the statistical forecast scheme feasible for the real-time use. Another advantage of this empirical approach lies in the consideration of the seasonal dependence of the regression parameters, making it applicable for forecasts all year-round. The forecast model exhibits useful extended-range skill for a real-time MJO forecast. Predictions with a correlation skill of greater than 0.3 (0.5) between predicted and observed unfiltered (EOF filtered) fields still can be detected over some regions at a lead time of 15 days, especially for boreal winter forecasts. This predictive skill is increased significantly when there are strong MJO signals at the initial forecast time. The analysis also shows that predictive skill for the upper-tropospheric winds is relatively higher than for the low-level winds and convection signals. Finally, the capability of this empirical model in predicting the MJO is further demonstrated by a case study of a real-time “hindcast” during the 2003/04 winter. Predictive skill demonstrated in this study provides an estimate of the predictability of the MJO and a benchmark for the dynamical extended-range models.


2012 ◽  
Vol 25 (10) ◽  
pp. 3566-3582 ◽  
Author(s):  
Mingyue Chen ◽  
Wanqiu Wang ◽  
Arun Kumar ◽  
Hui Wang ◽  
Bhaskar Jha

Abstract This study analyzes factors affecting the predictability of seasonal-mean precipitation over the tropical Indian Ocean. The analysis focuses on the contributions from the local sea surface temperature (SST) forcing in the Indian Ocean, the remote SST forcing related to ENSO in the tropical eastern Pacific, and the role of local air–sea coupling. To understand the impacts of the individual factors, the prediction skill over the tropical Indian Ocean for four model simulations, but with different treatments for the ocean, are compared. The seasonality in precipitation skill, the local precipitation–SST relationship, and prediction skill related to Indian Ocean dipole mode (IODM) are examined. It is found that the importance of the accuracy of local SST and the presence of local air–sea coupling in the Indian Ocean has a strong seasonal dependence. Accurate local SSTs are important during the boreal fall season, whereas the local air–sea coupling is important during the boreal spring. The precipitation skill over the Indian Ocean during boreal winter is primarily from ENSO. However, ENSO impacts are better realized with the inclusion of an interactive ocean. For all four seasons, the simulation without the interannual variations of local SST in the Indian Ocean shows the least precipitation skill and a much weaker seasonality. It is also found that, for the simulation where the global SSTs are relaxed to the observations and hence maintain some level of active air–sea coupling, the observed seasonal cycle of precipitation–SST relationship is reproduced reasonably well. In addition, the analysis also shows that simulations with accurate SST forcing display high precipitation skill during strong IODM events, indicating that IODM SST acts as a forcing for the atmospheric variability.


2019 ◽  
Vol 19 (7) ◽  
pp. 4235-4256 ◽  
Author(s):  
Christoph G. Hoffmann ◽  
Christian von Savigny

Abstract. The Madden–Julian oscillation (MJO) is a major source of intraseasonal variability in the troposphere. Recently, studies have indicated that also the solar 27-day variability could cause variability in the troposphere. Furthermore, it has been indicated that both sources could be linked, and particularly that the occurrence of strong MJO events could be modulated by the solar 27-day cycle. In this paper, we analyze whether the temporal evolution of the MJO phases could also be linked to the solar 27-day cycle. We basically count the occurrences of particular MJO phases as a function of time lag after the solar 27-day extrema in about 38 years of MJO data. Furthermore, we develop a quantification approach to measure the strength of such a possible relationship and use this to compare the behavior for different atmospheric conditions and different datasets, among others. The significance of the results is estimated based on different variants of the Monte Carlo approach, which are also compared. We find indications for a synchronization between the MJO phase evolution and the solar 27-day cycle, which are most notable under certain conditions: MJO events with a strength greater than 0.5, during the easterly phase of the quasi-biennial oscillation, and during boreal winter. The MJO appears to cycle through its eight phases within two solar 27-day cycles. The phase relation between the MJO and the solar variation appears to be such that the MJO predominantly transitions from phase 8 to 1 or from phase 4 and 5 during the solar 27-day minimum. These results strongly depend on the MJO index used such that the synchronization is most clearly seen when using univariate indices like the OLR-based MJO index (OMI) in the analysis but can hardly be seen with multivariate indices like the real-time multivariate MJO index (RMM). One possible explanation could be that the synchronization pattern is encoded particularly in the underlying outgoing longwave radiation (OLR) data. A weaker dependence of the results on the underlying solar proxy is also observed but not further investigated. Although we think that these initial indications are already worth noting, we do not claim to unambiguously prove this relationship in the present study, neither in a statistical nor in a causal sense. Instead, we challenge these initial findings ourselves in detail by varying underlying datasets and methods and critically discuss resulting open questions to lay a solid foundation for further research.


2012 ◽  
Vol 69 (7) ◽  
pp. 2107-2111 ◽  
Author(s):  
Paul E. Roundy

Abstract The zonal wavenumber–frequency power spectrum of outgoing longwave radiation in the global tropics suggests that power in convectively coupled Kelvin waves and the Madden–Julian oscillation (MJO) is organized into two distinct spectral peaks with a minimum in power in between. This work demonstrates that integration of wavelet power in the wavenumber–frequency domain over geographical regions of moderate trade winds yields a similar pronounced spectral gap between these peaks. In contrast, integration over regions of background low-level westerly wind yields a continuum of power with no gap between the MJO and Kelvin bands. Results further show that signals in tropical convection are redder in frequency in these low-level westerly wind zones, confirming that Kelvin waves tend to propagate more slowly eastward over the warm pool than other parts of the world. Results are consistent with the perspective that portions of disturbances labeled as Kelvin waves and the MJO that are proximate to Kelvin wave dispersion curves exist as a continuum over warm pool regions.


2013 ◽  
Vol 141 (12) ◽  
pp. 4197-4210 ◽  
Author(s):  
Michael J. Ventrice ◽  
Matthew C. Wheeler ◽  
Harry H. Hendon ◽  
Carl J. Schreck ◽  
Chris D. Thorncroft ◽  
...  

Abstract A new Madden–Julian oscillation (MJO) index is developed from a combined empirical orthogonal function (EOF) analysis of meridionally averaged 200-hPa velocity potential (VP200), 200-hPa zonal wind (U200), and 850-hPa zonal wind (U850). Like the Wheeler–Hendon Real-time Multivariate MJO (RMM) index, which was developed in the same way except using outgoing longwave radiation (OLR) data instead of VP200, daily data are projected onto the leading pair of EOFs to produce the two-component index. This new index is called the velocity potential MJO (VPM) indices and its properties are quantitatively compared to RMM. Compared to the RMM index, the VPM index detects larger-amplitude MJO-associated signals during boreal summer. This includes a slightly stronger and more coherent modulation of Atlantic tropical cyclones. This result is attributed to the fact that velocity potential preferentially emphasizes the planetary-scale aspects of the divergent circulation, thereby spreading the convectively driven component of the MJO’s signal across the entire globe. VP200 thus deemphasizes the convective signal of the MJO over the Indian Ocean warm pool, where the OLR variability associated with the MJO is concentrated, and enhances the signal over the relatively drier longitudes of the equatorial Pacific and Atlantic. This work provides a useful framework for systematic analysis of the strengths and weaknesses of different MJO indices.


2019 ◽  
Vol 76 (8) ◽  
pp. 2275-2294 ◽  
Author(s):  
Rachel C. Zelinsky ◽  
Chidong Zhang ◽  
Chuntao Liu

Abstract Understanding convective initiation of the Madden–Julian oscillation (MJO) remains an unmet challenge. MJO initiation has been perceived as a process starting from a convectively suppressed large-scale condition with gradual growth of shallow convection to congestus and to deep convective and stratiform systems that cover a large-scale area. During the DYNAMO field campaign over the Indian Ocean, MJO initiation was observed to start from an existing intertropical convergence zone (ITCZ) south of the equator. This raises a question of what possible role the ITCZ may play in convective initiation of the MJO. This study addresses this question through analysis of satellite observations of precipitation and a global reanalysis product. By setting several criteria, MJO and ITCZ events were objectively identified and grouped according to whether MJO initiation was immediately preceded by an ITCZ. The results demonstrate that an ITCZ is neither a necessary nor sufficient condition for convective initiation of the MJO. Nonetheless, evolution of the large-scale circulation, moisture, and convective characteristics during MJO initiation can be different with and without a preexisting ITCZ. Convective growth begins gradually before and during MJO initiation when there is a preexisting ITCZ whereas it is abrupt and slightly delayed without a preexisting ITCZ. Such differences are presumably related to the existing large-scale moist condition of the ITCZ. The results from this study suggest that there are multiple mechanisms for convective initiation of the MJO, which should be considered in theoretical understanding of the MJO.


2007 ◽  
Vol 64 (12) ◽  
pp. 4400-4416 ◽  
Author(s):  
Hirohiko Masunaga

Abstract The Madden–Julian oscillation (MJO), Kelvin wave, and equatorial Rossby (ER) wave—collectively called intraseasonal oscillations (ISOs)—are investigated using a 25-yr record of outgoing longwave radiation (OLR) measurements as well as the associated dynamical fields. The ISO modes are detected by applying bandpass filters to the OLR data in the frequency–wavenumber space. An automated wave-tracking algorithm is applied to each ISO mode so that convection centers accompanied with the ISOs are traced in space and time in an objective fashion. The identified paths of the individual ISO modes are first examined and found strongly modulated regionally and seasonally. The dynamical structure is composited with respect to the convection centers of each ISO mode. A baroclinic mode of the combined Rossby and Kelvin structure is prominent for the MJO, consistent with existing work. The Kelvin wave exhibits a low-level wind field resembling the shallow-water solution, while a slight lead of low-level convergence over convection suggests the impact of frictional boundary layer convergence on Kelvin wave dynamics. A lagged composite analysis reveals that the MJO is accompanied with a Kelvin wave approaching from the west preceding the MJO convective maximum in austral summer. MJO activity then peaks as the Kelvin and ER waves constructively interfere to enhance off-equatorial boundary layer convergence. The MJO leaves a Kelvin wave emanating to the east once the peak phase is passed. The approaching Kelvin wave prior to the development of MJO convection is absent in boreal summer and fall. The composite ER wave, loosely concentrated around the MJO, is nearly stationary throughout. A possible scenario to physically translate the observed result is also discussed.


2011 ◽  
Vol 139 (7) ◽  
pp. 2259-2275 ◽  
Author(s):  
Johannes Jenkner ◽  
William W. Hsieh ◽  
Alex J. Cannon

Abstract A novel methodology is presented for the identification of the mean cycle of the Madden–Julian oscillation (MJO) along the equator. The methodology is based on a nonlinear principal component (NLPC) computed with a neural network model. The bandpass-filtered input data encompass 30 yr with zonal winds at 850 and 200 hPa plus outgoing longwave radiation (OLR). The NLPC is conditioned on a sufficiently strong MJO activity and is computed both for the pooled dataset and for the dataset stratified into seasons. The NLPC for all data depicts a circular mode formed by the first two linear principal components (LPCs) with marginal contributions by the higher-order LPCs. Hence, the mean MJO cycle throughout the year is effectively captured by the amplitude of the leading two LPCs varying in quadrature. The NLPC for individual seasons shows additional variability, which mainly arises from a subordinate oscillation of the second pair of LPCs superimposed on the annual MJO signal. In reference to the all-year solution, the difference in resolved variability approximately accounts for 9% in solstitial seasons and 3% in equinoctial seasons. The phasing of the third LPC is such that convective activity oscillations over the Maritime Continent as well as wind oscillations over the Indian Ocean appear enhanced (suppressed) during boreal winter (summer). Also, convective activity oscillations appear more pronounced at the date line during both winter and summer. The phasing of the fourth LPC is such that upper-level westerlies over the Atlantic region are more persistent during boreal spring than during other seasons.


2016 ◽  
Vol 144 (12) ◽  
pp. 4827-4847 ◽  
Author(s):  
Caitlin M. Fine ◽  
Richard H. Johnson ◽  
Paul E. Ciesielski ◽  
Richard K. Taft

Abstract The role of Sumatra and adjacent topographic features in tropical cyclone (TC) formation over the Indian Ocean (IO) is investigated. Sumatra, as well as the Malay Peninsula and Java, have mountainous terrain that partially blocks low-level flow under typical environmental stratification. For easterly low-level flow, these terrain features often produce lee vortices, some of which subsequently shed and move westward from the northern and southern tips of Sumatra and thence downstream over the IO. Since Sumatra straddles the equator, extending in a northwest–southeast direction from approximately 6°N to 6°S, the lee vortices, while counter-rotating, are both cyclonic. Hence, they can serve as initial disturbances that eventually contribute to TC formation over the IO. In addition, low-level, equatorial westerly flow impinging on Sumatra is also typically blocked and diverges, at times contributing to cyclonic circulations over the IO, primarily near the southern end of the island. Data from two recent tropical campaigns, the 2008–10 Year of Tropical Convection (YOTC) and the 2011 Dynamics of the Madden–Julian Oscillation (DYNAMO), are used to study these phenomena. These datasets reveal the frequent occurrence of shed and nonshed terrain-induced cyclonic circulations over the IO, the majority of which occur during boreal fall and winter. During the 2.5 yr of the two campaigns, 13 wake vortices (13% of the shed circulations identified) were tracked and observed to subsequently develop into TCs over the northern and southern IO, accounting for 25% of the total TCs forming in the IO during that period.


2006 ◽  
Vol 19 (9) ◽  
pp. 1834-1849 ◽  
Author(s):  
Bryan C. Weare

Abstract Centered composite analysis is described and applied to gain a better understanding of the initial phases of the Madden–Julian oscillation (MJO). Centered composite analysis identifies the dates and central locations of key events. The elements of the composite means are centered on these central locations before averages are calculated. In this way much of the spatial fuzziness, which is inherent in traditional composite analysis, is removed. The results for the MJO, based on MJO-filtered outgoing longwave radiation for the reference data and 40-yr ECMWF Re-Analysis (ERA-40) and NCEP–NCAR reanalysis products for the composites, show highly significant composites of unfiltered data for not only zero lag, but also lags back to 20 days before the target events. These composites identify propagating patterns of surface pressure, upper- and lower-troposphere zonal winds, surface temperature, and 850-hPa specific humidity associated with MJO convective events in the Indian Ocean. The propagation characteristics of important features, especially surface pressure, differ substantially for MJO convective anomalies centered over the Indian or western Pacific Oceans. This suggests that distinctly different mechanisms may be dominant in these two regions, and that many earlier analyses may be mixing properties of the two.


Sign in / Sign up

Export Citation Format

Share Document