scholarly journals The Relationship between the ITCZ and MJO Initiation over the Indian Ocean

2019 ◽  
Vol 76 (8) ◽  
pp. 2275-2294 ◽  
Author(s):  
Rachel C. Zelinsky ◽  
Chidong Zhang ◽  
Chuntao Liu

Abstract Understanding convective initiation of the Madden–Julian oscillation (MJO) remains an unmet challenge. MJO initiation has been perceived as a process starting from a convectively suppressed large-scale condition with gradual growth of shallow convection to congestus and to deep convective and stratiform systems that cover a large-scale area. During the DYNAMO field campaign over the Indian Ocean, MJO initiation was observed to start from an existing intertropical convergence zone (ITCZ) south of the equator. This raises a question of what possible role the ITCZ may play in convective initiation of the MJO. This study addresses this question through analysis of satellite observations of precipitation and a global reanalysis product. By setting several criteria, MJO and ITCZ events were objectively identified and grouped according to whether MJO initiation was immediately preceded by an ITCZ. The results demonstrate that an ITCZ is neither a necessary nor sufficient condition for convective initiation of the MJO. Nonetheless, evolution of the large-scale circulation, moisture, and convective characteristics during MJO initiation can be different with and without a preexisting ITCZ. Convective growth begins gradually before and during MJO initiation when there is a preexisting ITCZ whereas it is abrupt and slightly delayed without a preexisting ITCZ. Such differences are presumably related to the existing large-scale moist condition of the ITCZ. The results from this study suggest that there are multiple mechanisms for convective initiation of the MJO, which should be considered in theoretical understanding of the MJO.

2013 ◽  
Vol 141 (12) ◽  
pp. 4173-4196 ◽  
Author(s):  
Jon Gottschalck ◽  
Paul E. Roundy ◽  
Carl J. Schreck III ◽  
Augustin Vintzileos ◽  
Chidong Zhang

Abstract An international field campaign, Dynamics of the Madden Julian Oscillation (DYNAMO), took place in the Indian Ocean during October 2011–March 2012 to collect observations for the Madden–Julian oscillation (MJO), especially its convective initiation processes. The large-scale atmospheric and oceanic conditions during the campaign are documented here. The ENSO and the Indian Ocean dipole (IOD) states, the monthly mean monsoon circulation and its associated precipitation, humidity, vertical and meridional/zonal overturning cells, and ocean surface currents are discussed. The evolution of MJO events is described using various fields and indices that have been used to subdivide the campaign into three periods. These periods were 1) 17 September–8 December 2011 (period 1), which featured two robust MJO events that circumnavigated the global tropics with a period of less than 45 days; 2) 9 December 2011–31 January 2012, which contained less coherent activity (period 2); and 3) 1 February–12 April 2012, a period that featured the strongest and most slowly propagating MJO event of the campaign (period 3). Activities of convectively coupled atmospheric Kelvin and equatorial Rossby (ER) waves and their interaction with the MJO are discussed. The overview of the atmospheric and oceanic variability during the field campaign raises several scientific issues pertaining to our understanding of the MJO, or lack thereof. Among others, roles of Kelvin and ER waves in MJO convective initiation, convection-circulation decoupling on the MJO scale, applications of MJO filtering methods and indices, and ocean–atmosphere coupling need further research attention.


2005 ◽  
Vol 18 (19) ◽  
pp. 4046-4064 ◽  
Author(s):  
Guang J. Zhang ◽  
Mingquan Mu

Abstract This study presents the simulation of the Madden–Julian oscillation (MJO) in the NCAR CCM3 using a modified Zhang–McFarlane convection parameterization scheme. It is shown that, with the modified scheme, the intraseasonal (20–80 day) variability in precipitation, zonal wind, and outgoing longwave radiation (OLR) is enhanced substantially compared to the standard CCM3 simulation. Using a composite technique based on the empirical orthogonal function (EOF) analysis, the paper demonstrates that the simulated MJOs are in better agreement with the observations than the standard model in many important aspects. The amplitudes of the MJOs in 850-mb zonal wind, precipitation, and OLR are comparable to those of the observations, and the MJOs show clearly eastward propagation from the Indian Ocean to the Pacific. In contrast, the simulated MJOs in the standard CCM3 simulation are weak and have a tendency to propagate westward in the Indian Ocean. Nevertheless, there remain several deficiencies that are yet to be addressed. The time period of the MJOs is shorter, about 30 days, compared to the observed time period of 40 days. The spatial scale of the precipitation signal is smaller than observed. Examination of convective heating from both deep and shallow convection and its relationship with moisture anomalies indicates that near the mature phase of the MJO, regions of shallow convection developing ahead of the deep convection coincide with regions of positive moisture anomalies in the lower troposphere. This is consistent with the recent observations and theoretical development that shallow convection helps to precondition the atmosphere for MJO by moistening the lower troposphere. Sensitivity tests are performed on the individual changes in the modified convection scheme. They show that both change of closure and use of a relative humidity threshold for the convection trigger play important roles in improving the MJO simulation. Use of the new closure leads to the eastward propagation of the MJO and increases the intensity of the MJO signal in the wind field, while imposing a relative humidity threshold enhances the MJO variability in precipitation.


2013 ◽  
Vol 70 (9) ◽  
pp. 2696-2712 ◽  
Author(s):  
Jian Ling ◽  
Chidong Zhang ◽  
Peter Bechtold

Abstract In this study, the authors seek large-scale signals that may distinguish MJO from non-MJO convective events before they start over the Indian Ocean. Three such signals were found. Low-level easterly anomalies extend from the surface to the midtroposphere and move from the western to eastern Indian Ocean. Surface pressure anomalies exhibit a zonal structure of wavenumber 1 with an equatorial low-pressure surge penetrating eastward from Africa through the Indian Ocean and reaching the Maritime Continent. Negative temperature anomalies in the middle to upper troposphere start over the Indian Ocean and move eastward. All of them emerge 20 days before convective initiation of the MJO and move eastward at speeds close to that of the MJO without any direct connection to MJO convection. They are not obviously related to the extratropics in any discernible way or any preceding MJO events. They are absent in non-MJO convective events. These signals provide useful information for forecasting MJO initiation over the Indian Ocean. They can be signatures of a dry dynamics mode of the MJO, if it exists.


2018 ◽  
Vol 31 (18) ◽  
pp. 7549-7564 ◽  
Author(s):  
Tamaki Suematsu ◽  
Hiroaki Miura

An environment favorable for the development of the Madden–Julian oscillation (MJO) was investigated by classifying MJO-like atmospheric patterns as MJO and regionally confined convective (RCC) events. Comparison of MJO and RCC events showed that even when preceded by a major convective suppression event, convective events did not develop into an MJO when large-scale buildup of moist static energy (MSE) was inhibited. The difference in the MSE accumulation between MJO and RCC is related to the contrasting low-frequency basic-state sea surface temperature (SST) pattern; the MJO and RCC events were associated with anomalously warm and cold low-frequency SSTs prevailing over the western to central Pacific, respectively. Differences in the SST anomaly field were absent from the intraseasonal frequency range of 20–60 days. The basic-state SST pattern associated with the MJO was characterized by a positive zonal SST gradient from the Indian Ocean to the western Pacific, which provided a long-standing condition that allowed for sufficient buildup of MSE across the Indian Ocean to the western Pacific via large-scale low-level convergence over intraseasonal and longer time scales. The results of this study suggest the importance of such a basic-state SST, with a long-lasting positive zonal SST gradient, for enhancing convection over a longer than intraseasonal time scale in realizing a complete MJO life cycle.


2021 ◽  
pp. 1-50
Author(s):  
Tamaki Suematsu ◽  
Hiroaki Miura

AbstractThe eastward movement of a convectively active region is a distinguishing characteristic of the Madden–Julian oscillation (MJO). However, knowledge about the mechanisms that determine the eastward movement speed remains limited. This study investigates how the background environment modulates the speed of the boreal winter MJO and describes an intrinsic relationship between the MJO and background atmospheric circulation. We calculated the speed of the MJO events from the daily tracking of the locations of the minimum values of the outgoing longwave radiation anomaly in the time–longitude space. These speeds were then used to analyze systematic differences in the sea surface temperature (SST) distribution associated with the MJO speed. The analysis revealed a deceleration of the MJO under low-frequency (> 90 days) SST distributions that increased toward the western Pacific from both the Indian Ocean and the eastern Pacific. In contrast, the dependency on SST variability in intraseasonal frequencies (20–90 days) was small. Subsequently, the relationship between the MJO speed and background circulation, which is largely determined by the lower boundary condition set by the low-frequency SST distribution, was analyzed. The analysis counterintuitively revealed that the MJO tends to decelerate when the large-scale zonal circulation with low-level westerlies and upper-level easterlies from the Indian Ocean to the Maritime Continents is strong. The results suggest a novel view that the MJO is an integral component of the Walker circulation and that its eastward movement is modulated by the state of the large-scale flow of the Walker circulation.


2017 ◽  
Vol 56 (7) ◽  
pp. 2035-2052 ◽  
Author(s):  
Thomas Garot ◽  
Hélène Brogniez ◽  
Renaud Fallourd ◽  
Nicolas Viltard

AbstractThe spatial and temporal distribution of upper-tropospheric humidity (UTH) observed by the Sounder for Atmospheric Profiling of Humidity in the Intertropics by Radiometry (SAPHIR)/Megha-Tropiques radiometer is analyzed over two subregions of the Indian Ocean during October–December over 2011–14. The properties of the distribution of UTH were studied with regard to the phase of the Madden–Julian oscillation (active or suppressed) and large-scale advection versus local production of moisture. To address these topics, first, a Lagrangian back-trajectory transport model was used to assess the role of the large-scale transport of air masses in the intraseasonal variability of UTH. Second, the temporal evolution of the distribution of UTH is analyzed using the computation of the higher moments of its probability distribution function (PDF) defined for each time step over the domain. The results highlight significant differences in the PDF of UTH depending on the phase of the MJO. The modeled trajectories ending in the considered domain originate from an area that strongly varies depending on the phases of the MJO: during the active phases, the air masses are spatially constrained within the tropical Indian Ocean domain, whereas a distinct upper-tropospheric (200–150 hPa) westerly flow guides the intraseasonal variability of UTH during the suppressed phases. Statistical relationships between the cloud fractions and the UTH PDF moments of are found to be very similar regardless of the convective activity. However, the occurrence of thin cirrus clouds is associated with a drying of the upper troposphere (enhanced during suppressed phases), whereas the occurrence of thick cirrus anvil clouds appears to be significantly related to a moistening of the upper troposphere.


2006 ◽  
Vol 19 (10) ◽  
pp. 1948-1969 ◽  
Author(s):  
Matthew H. England ◽  
Caroline C. Ummenhofer ◽  
Agus Santoso

Abstract Interannual rainfall extremes over southwest Western Australia (SWWA) are examined using observations, reanalysis data, and a long-term natural integration of the global coupled climate system. The authors reveal a characteristic dipole pattern of Indian Ocean sea surface temperature (SST) anomalies during extreme rainfall years, remarkably consistent between the reanalysis fields and the coupled climate model but different from most previous definitions of SST dipoles in the region. In particular, the dipole exhibits peak amplitudes in the eastern Indian Ocean adjacent to the west coast of Australia. During dry years, anomalously cool waters appear in the tropical/subtropical eastern Indian Ocean, adjacent to a region of unusually warm water in the subtropics off SWWA. This dipole of anomalous SST seesaws in sign between dry and wet years and appears to occur in phase with a large-scale reorganization of winds over the tropical/subtropical Indian Ocean. The wind field alters SST via anomalous Ekman transport in the tropical Indian Ocean and via anomalous air–sea heat fluxes in the subtropics. The winds also change the large-scale advection of moisture onto the SWWA coast. At the basin scale, the anomalous wind field can be interpreted as an acceleration (deceleration) of the Indian Ocean climatological mean anticyclone during dry (wet) years. In addition, dry (wet) years see a strengthening (weakening) and coinciding southward (northward) shift of the subpolar westerlies, which results in a similar southward (northward) shift of the rain-bearing fronts associated with the subpolar front. A link is also noted between extreme rainfall years and the Indian Ocean Dipole (IOD). Namely, in some years the IOD acts to reinforce the eastern tropical pole of SST described above, and to strengthen wind anomalies along the northern flank of the Indian Ocean anticyclone. In this manner, both tropical and extratropical processes in the Indian Ocean generate SST and wind anomalies off SWWA, which lead to moisture transport and rainfall extremes in the region. An analysis of the seasonal evolution of the climate extremes reveals a progressive amplification of anomalies in SST and atmospheric circulation toward a wintertime maximum, coinciding with the season of highest SWWA rainfall. The anomalies in SST can appear as early as the summertime months, however, which may have important implications for predictability of SWWA rainfall extremes.


2019 ◽  
Vol 56 (1) ◽  
pp. 1
Author(s):  
Marie Anna Speville ◽  
Zaynab Toorabally ◽  
Anwar Hussein Subratty

The paper aims to present results from a research work carried out among inhabitants of two islands of the Indian Ocean, namely Mauritius and Rodrigues to assess the possible effects of foods on mood. An online-based questionnaire survey was carried out among a random sample of 384 participants, including male and female, aged between 18-54 years old from Mauritius and Rodrigues. The questionnaire consisted of 15 questions; sections included demography, general knowledge of the participants on the different types of foods and their possible effects on moods and actual mood upon consumption. Data analysis showed that happiness correlated positively with food known to be rich in protein as well as fats and oils. It was also found that consumption of snacks and sweets among the Rodriguan male participants led to a mood of being angry, (p=0.024). Based on our findings, it was evident that effects on mood were influenced by gender as well as demographic factors. Given some slight cultural differences among the inhabitants of the islands, further research is warranted to assess the relative importance of food on moods especially to the dietary behaviours. No data is readily available on the effects of food on mood among inhabitants of the Republic of Mauritius, the study lends support for the need of a comparative study to understand the theoretical understanding between the two islands with different cultural aspects especially to nutrition. This paper would prove useful for the dietary behaviors as well as health and quality of life improvement in Mauritius and Rodrigues.


Author(s):  
Danna Agmon

This chapter considers the role of family networks, both French and Tamil, in the development of French empire in India. It charts how two Tamil dynasties drew on their kinship ties to create commercial networks that spanned the Indian Ocean, and highlights the involvement of of one local woman in the relationship between French colonists and local familial institutions.


Sign in / Sign up

Export Citation Format

Share Document