scholarly journals Solsticial Hadley Cell ascending edge theory from supercriticality

Author(s):  
Spencer A. Hill ◽  
Simona Bordoni ◽  
Jonathan L. Mitchell

AbstractHow far the Hadley circulation’s ascending branch extends into the summer hemisphere is a fundamental but incompletely understood characteristic of Earth’s climate. Here, we present a predictive, analytical theory for this ascending edge latitude based on the extent of supercritical forcing. Supercriticality sets the minimum extent of a large-scale circulation based on the angular momentum and absolute vorticity distributions of the hypothetical state were the circulation absent. We explicitly simulate this latitude-by-latitude radiative-convective equilibrium (RCE) state. Its depth-averaged temperature profile is suitably captured by a simple analytical approximation that increases linearly with sinφ, where φ is latitude, from the winter to the summer pole. This, in turn, yields a one-third power-law scaling of the supercritical forcing extent with the thermal Rossby number. In moist and dry idealized GCM simulations under solsticial forcing performed with a wide range of planetary rotation rates, the ascending edge latitudes largely behave according to this scaling.

2019 ◽  
Vol 76 (7) ◽  
pp. 1989-2004 ◽  
Author(s):  
Martin S. Singh

Abstract The role of planetary rotation in limiting the extent of the cross-equatorial solsticial Hadley cell (SHC) is investigated using idealized simulations with an aquaplanet general circulation model run under perpetual-solstice conditions. Consistent with previous studies that include a seasonal cycle, the SHC extent increases with decreasing rotation rate, and it occupies the entire globe for sufficiently low planetary rotation rates. A simple theory for the summer-hemisphere extent of the SHC is constructed in which it is assumed that the SHC occupies regions for which a hypothetical radiative–convective equilibrium state is physically unattainable. The theory predicts that the SHC extends farther into the summer hemisphere as the rotation rate is decreased, qualitatively reproducing the behavior of the simulations, but it generally underestimates the simulated SHC extent. A diagnostic theory for the summer-hemisphere SHC extent is then developed based on the assumptions of slantwise convective neutrality and conservation of angular momentum within the Hadley cell. The theory relates the structure of the SHC in the summer hemisphere to the distribution of boundary layer entropy in the dynamically equilibrated simulations. The resultant diagnostic for the SHC extent generalizes the convective quasi-equilibrium-based constraint of Privé and Plumb, in which the position of rain belts is related to maxima in the low-level entropy distribution.


2021 ◽  
Vol 78 (5) ◽  
pp. 1445-1463
Author(s):  
Jonathan L. Mitchell ◽  
Spencer A. Hill

AbstractWeak-temperature-gradient influences from the tropics and quasigeostrophic influences from the extratropics plausibly constrain the subtropical-mean static stability in terrestrial atmospheres. Because mean descent acting on this static stability is a leading-order term in the thermodynamic balance, a state-invariant static stability would impose constraints on the Hadley cells, which this paper explores in simulations of varying planetary rotation rate. If downdraft-averaged effective heating (the sum of diabatic heating and eddy heat flux convergence) too is invariant, so must be vertical velocity—an “omega governor.” In that case, the Hadley circulation overturning strength and downdraft width must scale identically—the cell can strengthen only by widening or weaken only by narrowing. Semiempirical scalings demonstrate that subtropical eddy heat flux convergence weakens with rotation rate (scales positively) while diabatic heating strengthens (scales negatively), compensating one another if they are of similar magnitude. Simulations in two idealized, dry GCMs with a wide range of planetary rotation rates exhibit nearly unchanging downdraft-averaged static stability, effective heating, and vertical velocity, as well as nearly identical scalings of the Hadley cell downdraft width and strength. In one, eddy stresses set this scaling directly (the Rossby number remains small); in the other, eddy stress and bulk Rossby number changes compensate to yield the same, ~Ω−1/3 scaling. The consistency of this power law for cell width and strength variations may indicate a common driver, and we speculate that Ekman pumping could be the mechanism responsible for this behavior. Diabatic heating in an idealized aquaplanet GCM is an order of magnitude larger than in dry GCMs and reanalyses, and while the subtropical static stability is insensitive to rotation rate, the effective heating and vertical velocity are not.


2016 ◽  
Vol 144 (4) ◽  
pp. 1407-1421 ◽  
Author(s):  
Michael L. Waite

Abstract Many high-resolution atmospheric models can reproduce the qualitative shape of the atmospheric kinetic energy spectrum, which has a power-law slope of −3 at large horizontal scales that shallows to approximately −5/3 in the mesoscale. This paper investigates the possible dependence of model energy spectra on the vertical grid resolution. Idealized simulations forced by relaxation to a baroclinically unstable jet are performed for a wide range of vertical grid spacings Δz. Energy spectra are converged for Δz 200 m but are very sensitive to resolution with 500 m ≤ Δz ≤ 2 km. The nature of this sensitivity depends on the vertical mixing scheme. With no vertical mixing or with weak, stability-dependent mixing, the mesoscale spectra are artificially amplified by low resolution: they are shallower and extend to larger scales than in the converged simulations. By contrast, vertical hyperviscosity with fixed grid-scale damping rate has the opposite effect: underresolved spectra are spuriously steepened. High-resolution spectra are converged except for the stability-dependent mixing case, which are damped by excessive mixing due to enhanced shear over a wide range of horizontal scales. It is shown that converged spectra require resolution of all vertical scales associated with the resolved horizontal structures: these include quasigeostrophic scales for large-scale motions with small Rossby number and the buoyancy scale for small-scale motions at large Rossby number. It is speculated that some model energy spectra may be contaminated by low vertical resolution, and it is recommended that vertical-resolution sensitivity tests always be performed.


2019 ◽  
Vol 76 (2) ◽  
pp. 497-516 ◽  
Author(s):  
Gang Chen ◽  
Jesse Norris ◽  
J. David Neelin ◽  
Jian Lu ◽  
L. Ruby Leung ◽  
...  

Abstract Precipitation changes in a warming climate have been examined with a focus on either mean precipitation or precipitation extremes, but changes in the full probability distribution of precipitation have not been well studied. This paper develops a methodology for the quantile-conditional column moisture budget of the atmosphere for the full probability distribution of precipitation. Analysis is performed on idealized aquaplanet model simulations under 3-K uniform SST warming across different horizontal resolutions. Because the covariance of specific humidity and horizontal mass convergence is much reduced when conditioned onto a given precipitation percentile range, their conditional averages yield a clear separation between the moisture (thermodynamic) and circulation (dynamic) effects of vertical moisture transport on precipitation. The thermodynamic response to idealized climate warming can be understood as a generalized “wet get wetter” mechanism, in which the heaviest precipitation of the probability distribution is enhanced most from increased gross moisture stratification, at a rate controlled by the change in lower-tropospheric moisture rather than column moisture. The dynamic effect, in contrast, can be interpreted by shifts in large-scale atmospheric circulations such as the Hadley cell circulation or midlatitude storm tracks. Furthermore, horizontal moisture advection, albeit of secondary role, is important for regional precipitation change. Although similar mechanisms are at play for changes in both mean precipitation and precipitation extremes, the thermodynamic contributions of moisture transport to increases in high percentiles of precipitation tend to be more widespread across a wide range of latitudes than increases in the mean, especially in the subtropics.


2014 ◽  
Vol 27 (14) ◽  
pp. 5504-5516 ◽  
Author(s):  
Damianos F. Mantsis ◽  
Benjamin R. Lintner ◽  
Anthony J. Broccoli ◽  
Michael P. Erb ◽  
Amy C. Clement ◽  
...  

Abstract The inter- and intrahemispheric climate responses to a change in obliquity are investigated using the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1. (GFDL CM2.1). Reduced obliquity causes a weakening of the seasonal insolation contrast between the summer and winter hemispheres and a strengthening of the meridional insolation gradient within the summer hemisphere. The interhemispheric insolation change is associated with weakening of the cross-equatorial Hadley circulation and reduced heat transport from the summer hemisphere to the winter hemisphere, in both the ocean and atmosphere. In contrast, the intrahemispheric insolation change is associated with increased midlatitude summer eddy activity as seen by the increased atmospheric heat transport at those latitudes. Analysis of the zonal mean atmospheric meridional overturning circulation on isentropic surfaces confirms the increase of the midlatitude eddy circulation, which is driven by changes of sensible and latent heat fluxes, as well as changes in the stratification or distribution of entropy. It is suggested that the strengthening of this circulation is associated with an equatorward shift of the ascending branch of the winter Hadley cell.


Author(s):  
Volodymyr Pokalyuk ◽  
Ihor Lomakin ◽  
Ihor Shuraev

Structural geomorphological analysis of large scale 3D digital radar models of seabed landscape topography has allowed us to reveal within the Balkan-Black Sea region a system of tectonically formed subparallel trans-regional linear slab-shaped zones. On the map they appeared as ENE-directed throughout stripes, distanced approximately 100 km from each other. These linear zones are significant components of the rhegmatogenic fault network of the examined area, as you can see on the map: I — South Carpathian, II — Peri-Carpathian, III — Azov Adriatic, IV — Balkan Crimean, V — North Greek, VI — North Aegean, VII — North Anatolian. Without interfering with intra-regional geological elements, they intersect a wide range of diverse types of geological blocks with different structure, age and origin, and expand into the seabeds of the Black and Aegean seas. The general consistency of their spatial, morphologic structural and kinematic organization confirmes a uniform dynamic mechanism of their formation, likely connected to the planetary rotation-induced stress.


2020 ◽  
Author(s):  
Pablo Zurita-Gotor

<p>This work is concerned with the large-scale structure of the upper-level divergence/precipitation field in the deep tropics. Once the fine ITCZ structure is filtered out, the coarse-grained eddy divergence field is found to tilt eastward moving away from its maximum near the equator in the summer hemisphere. This robust tilt (observed for both hemispheres and seasons) is also present in the classical Gill solution.</p><p>In this presentation we show that the sign of the tilt is intimately linked to the direction of the eddy momentum flux. The observed eastward tilt is such that the momentum flux is directed towards the wave source, suggesting that the observed tilt is determined by wave propagation.</p><p>We also discuss the determination of the tilt in the simple Gill model and its sensitivity to the meridional Hadley flow. We show that the increase in the cross-equatorial momentum flux when the Hadley cell strengthens is associated with an increased tilt of the divergence field in the downstream direction of the flow, supporting the conjecture that the tilt is associated with propagation. </p>


2018 ◽  
Vol 859 ◽  
pp. 921-948 ◽  
Author(s):  
Shantanu S. Bhat ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Kerry Hourigan ◽  
Mark C. Thompson

The individual and combined influences of aspect ratio ($A$), Reynolds number ($Re$) and Rossby number ($Ro$) on the leading-edge vortex (LEV) of a rotating wing of insect-like planform are investigated numerically. A previous study from our group has determined the wingspan to be an appropriate length scale governing the large-scale LEV structure. In this study, the $A$ range considered is further extended, to show that this scaling works well as $A$ is varied by a factor of 4 ($1.8\leqslant A\leqslant 7.28$) and over a $Re$ range of two orders of magnitude. The present study also extends this scaling for wings with an offset from the rotation axis, which is typically the case for actual insects and often for experiments. Remarkably, the optimum range of $A$ based on the lift coefficients at different $Re$ coincides with that observed in nature. The scaling based on the wingspan is extended to the acceleration terms of the Navier–Stokes equations, suggesting a modified scaling of $Ro$, which decouples the effects of $A$. A detailed investigation of the flow structures, by increasing $Ro$ in a wide range, reveals the weakening of the LEV due to the reduced spanwise flow, resulting in a reduced lift. Overall, the use of span-based scaling of $Re$ and $Ro$, together with $A$, may help reconcile apparent conflicting trends between observed variations in aerodynamic performance in different sets of experiments and simulations.


2013 ◽  
Vol 26 (10) ◽  
pp. 3357-3376 ◽  
Author(s):  
H. Nguyen ◽  
A. Evans ◽  
C. Lucas ◽  
I. Smith ◽  
B. Timbal

Abstract Analysis of the annual cycle of intensity, extent, and width of the Hadley circulation across a 31-yr period (1979–2009) from all existent reanalyses reveals a good agreement among the datasets. All datasets show that intensity is at a maximum in the winter hemisphere and at a minimum in the summer hemisphere. Maximum and minimum values of meridional extent are reached in the respective autumn and spring hemispheres. While considering the horizontal momentum balance, where a weakening of the Hadley cell (HC) is expected in association with a widening, it is shown here that there is no direct relationship between intensity and extent on a monthly time scale. All reanalyses show an expansion in both hemispheres, most pronounced and statistically significant during summer and autumn at an average rate of expansion of 0.55° decade−1 in each hemisphere. In contrast, intensity trends are inconsistent among the datasets, although there is a tendency toward intensification, particularly in winter and spring. Correlations between the HC and tropical and extratropical large-scale modes of variability suggest interactions where the extent of the HC is influenced by El Niño–Southern Oscillation (ENSO) and the annular modes. The cells tend to shrink (expand) during the warm (cold) phase of ENSO and during the low (high) phase of the annular modes. Intensity appears to be influenced only by ENSO and only during spring for the southern cell and during winter for the northern cell.


2021 ◽  
Vol 34 (9) ◽  
pp. 3543-3554
Author(s):  
Tyler Cox ◽  
Kyle C. Armour ◽  
Gerard H. Roe ◽  
Aaron Donohoe ◽  
Dargan M. W. Frierson

AbstractAtmospheric heat transport is an important piece of our climate system, yet we lack a complete theory for its magnitude or changes. Atmospheric dynamics and radiation play different roles in controlling the total atmospheric heat transport (AHT) and its partitioning into components associated with eddies and mean meridional circulations. This work focuses on two specific controls: a radiative one, namely atmospheric radiative temperature tendencies, and a dynamic one, the planetary rotation rate. We use an idealized gray radiation model to employ a novel framework to lock the radiative temperature tendency and total AHT to climatological values, even while the rotation rate is varied. This setup allows for a systematic study of the effects of radiative tendency and rotation rate on AHT. We find that rotation rate controls the latitudinal extent of the Hadley cell and the heat transport efficiency of eddies. Both the rotation rate and radiative tendency influence the strength of the Hadley cell and the strength of equator–pole energy differences that are important for AHT by eddies. These two controls do not always operate independently and can reinforce or dampen each other. In addition, we examine how individual AHT components, which vary with latitude, sum to a total AHT that varies smoothly with latitude. At slow rotation rates the mean meridional circulation is most important in ensuring total AHT varies smoothly with latitude, while eddies are most important at rotation rates similar to, and faster than, those of Earth.


Sign in / Sign up

Export Citation Format

Share Document