scholarly journals Arctic/Atlantic Exchanges via the Subpolar Gyre*

2012 ◽  
Vol 25 (7) ◽  
pp. 2421-2439 ◽  
Author(s):  
Helene R. Langehaug ◽  
Iselin Medhaug ◽  
Tor Eldevik ◽  
Odd Helge Otterå

Abstract In the present study the decadal variability in the strength and shape of the subpolar gyre (SPG) in a 600-yr preindustrial simulation using the Bergen Climate Model is investigated. The atmospheric influence on the SPG strength is reflected in the variability of Labrador Sea Water (LSW), which is largely controlled by the North Atlantic Oscillation, the first mode of the North Atlantic atmospheric variability. A combination of the amount of LSW, the overflows from the Nordic seas, and the second mode of atmospheric variability, the East Atlantic Pattern, explains 44% of the modeled decadal variability in the SPG strength. A prior increase in these components leads to an intensified SPG in the western subpolar region. Typically, an increase of one standard deviation (std dev) of the total overflow (1 std dev = 0.2 Sv; 1 Sv ≡ 106 m3 s−1) corresponds to an intensification of about one-half std dev of the SPG strength (1 std dev = 2 Sv). A similar response is found for an increase of one std dev in the amount of LSW, and simultaneously the strength of the North Atlantic Current increases by one-half std dev (1 std dev = 0.9 Sv).

2020 ◽  
Author(s):  
Didier Swingedouw ◽  
Marion Devilliers ◽  
Juliette Mignot ◽  
Julie Deshayes ◽  
Gilles Garric ◽  
...  

<p>Greenland experienced intensive melting over the last century, especially in the 1920s and over the last decades. The supplementary input into the ocean is influencing the freshwater budget of the North Atlantic. Simultaneously, some signs of a recent weakening of the Atlantic meridional overturning circulation (AMOC) have been reported. In order to better understand the possible impact of the melting on the North Atlantic circulation, salinity and temperature trends, we construct an observation-based estimate of the freshwater fluxes from 1840 to 2014 associated to the runoff fluxes from Greenland ice sheet and surrounding glaciers and ice caps. Input from iceberg melting is also included and spatially distributed over the North Atlantic following an observed climatology. We force historical simulations of the IPSL-CM6A-LR coupled climate model with this reconstruction from 1920 to 2014. The 10-member ensemble mean displays freshened and cooled waters around Greenland, which spread in the subpolar gyre, and then towards the subtropical gyre and the Nordic Seas. Over the whole period, the convection is reduced in the Labrador and Nordic Seas, while it is slightly enhanced in the Irminger Sea, and the AMOC is reduced by 0.32±0.35 Sv at 26°N. This highlights that the AMOC decrease due to Greenland melting remains modest in these simulations and can only explain a very moderate amount of the 3±1 Sv weakening suggested in a recent study. The multi-decadal trend of the North Atlantic surface temperature obtained with the additional freshwater forcing is more in line with observations than in standard historical simulations. We also show a clear improvement of the representation of the 1995 abrupt warming in the subpolar gyre in the melting ensemble, which may thus be partly forced by Greenland ice sheet melting. Mechanisms at play imply changes in the variability of the AMOC in the melting ensemble as compared to the historical one. Such an impact on forced decadal variability has crucial consequences for decadal prediction systems that may gain skill by including observed Greenland ice sheet melting.</p>


2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2020 ◽  
Author(s):  
Pascale Lherminier ◽  
Herlé Mercier ◽  
Fiz F. Perez ◽  
Marcos Fontela

<p><span>According to the subpolar AMOC index built from ARGO and altimetry, the AMOC amplitude across the OVIDE section (from Greenland to Portugal) was similar to that of the mid-1990s between 2014 and 2017, i.e. 4-5 Sv above the level of the 2000s. It then returned to average values in 2018. The same index computed independently from the biennial summer cruises over 2002-2018 confirms this statement. Interestingly, despite the concomitant cold and fresh anomaly in the subpolar Atlantic, the heat flux across OVIDE remains correlated with the AMOC amplitude. This can be explained by the paths taken by the North Atlantic Current and the transport anomalies in the subarctic front. In 2014, the OVIDE section was complemented by a section from Greenland to Newfoundland (GA01), showing how the water of the lower limb of the AMOC was densified by deep convection in the Labrador Sea. The spatial patterns of volume, heat, salt and oxygen transport anomalies after 2014 will be discussed at the light of the 2000s average.</span></p>


2017 ◽  
Vol 50 (3-4) ◽  
pp. 921-937 ◽  
Author(s):  
Jon Robson ◽  
Irene Polo ◽  
Dan L. R. Hodson ◽  
David P. Stevens ◽  
Len C. Shaffrey

2008 ◽  
Vol 38 (1) ◽  
pp. 104-120 ◽  
Author(s):  
Amy S. Bower ◽  
Wilken-Jon von Appen

Abstract Recent studies have indicated that the North Atlantic Ocean subpolar gyre circulation undergoes significant interannual-to-decadal changes in response to variability in atmospheric forcing. There are also observations, however, suggesting that the southern limb of the subpolar gyre, namely, the eastward-flowing North Atlantic Current (NAC), may be quasi-locked to particular latitudes in the central North Atlantic by fracture zones (gaps) in the Mid-Atlantic Ridge. This could constrain the current’s ability to respond to variability in forcing. In the present study, subsurface float trajectories at 100–1000 m collected during 1997–99 and satellite-derived surface geostrophic velocities from 1992 to 2006 are used to provide an improved description of the detailed pathways of the NAC over the ridge and their relationship to bathymetry. Both the float and satellite observations indicate that in 1997–99, the northern branch of the NAC was split into two branches as it crossed the ridge, one quasi-locked to the Charlie–Gibbs Fracture Zone (CGFZ; 52°–53°N) and the other to the Faraday Fracture Zone (50°–51°N). The longer satellite time series shows, however, that this pattern did not persist outside the float sampling period and that other branching modes persisted for one or more years, including an approximately 12-month time period in 2002–03 when the strongest eastward flow over the ridge was at ∼49°N. Schott et al. showed how northward excursions of the NAC can temporarily block the westward flow of the Iceland–Scotland Overflow Water through the CGFZ. From the 13-yr time series of surface geostrophic velocity, it is estimated that such blocking may occur on average 6% of the time, although estimates for any given 12-month period range from 0% to 35%.


2008 ◽  
Vol 38 (9) ◽  
pp. 2097-2103 ◽  
Author(s):  
M. Susan Lozier ◽  
Nicole M. Stewart

Abstract Historical hydrographic data in the eastern North Atlantic are used to suggest a connection between the northward penetration of Mediterranean Overflow Water (MOW) and the location of the subpolar front, the latter of which is shown to vary with the North Atlantic Oscillation (NAO). During persistent high-NAO periods, when the subpolar front moves eastward, waters in the subpolar gyre essentially block the northward-flowing MOW, preventing its entry into the subpolar gyre. Conversely, during low NAO periods, the subpolar front moves westward, allowing MOW to penetrate past Porcupine Bank into the subpolar gyre. The impacts of an intermittent penetration of MOW into the subpolar gyre, including the possible effect on water mass transformations, remain to be investigated.


2015 ◽  
Vol 28 (19) ◽  
pp. 7659-7677 ◽  
Author(s):  
Claude Frankignoul ◽  
Guillaume Gastineau ◽  
Young-Oh Kwon

Abstract Maximum covariance analysis of a preindustrial control simulation of the NCAR Community Climate System Model, version 4 (CCSM4), shows that a barotropic signal in winter broadly resembling a negative phase of the North Atlantic Oscillation (NAO) follows an intensification of the Atlantic meridional overturning circulation (AMOC) by about 7 yr. The delay is due to the cyclonic propagation along the North Atlantic Current (NAC) and the subpolar gyre of a SST warming linked to a northward shift and intensification of the NAC, together with an increasing SST cooling linked to increasing southward advection of subpolar water along the western boundary and a southward shift of the Gulf Stream (GS). These changes result in a meridional SST dipole, which follows the AMOC intensification after 6 or 7 yr. The SST changes were initiated by the strengthening of the western subpolar gyre and by bottom torque at the crossover of the deep branches of the AMOC with the NAC on the western flank of the Mid-Atlantic Ridge and the GS near the Tail of the Grand Banks, respectively. The heat flux damping of the SST dipole shifts the region of maximum atmospheric transient eddy growth southward, leading to a negative NAO-like response. No significant atmospheric response is found to the Atlantic multidecadal oscillation (AMO), which is broadly realistic but shifted south and associated with a much weaker meridional SST gradient than the AMOC fingerprint. Nonetheless, the wintertime atmospheric response to the AMOC shows some similarity with the observed response to the AMO, suggesting that the ocean–atmosphere interactions are broadly realistic in CCSM4.


Sign in / Sign up

Export Citation Format

Share Document