scholarly journals Rectification Feedback of High-Frequency Atmospheric Variability into Low-Frequency Zonal Flows in the Tropical Pacific

2012 ◽  
Vol 25 (14) ◽  
pp. 5088-5101 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Jong-Seong Kug ◽  
Mi-Jung Lim

Abstract In this study, the rectification process of high-frequency (HF) zonal-wind variability on the low-frequency (LF) zonal wind is investigated through an idealized experiment using an atmospheric general circulation model (AGCM). Through an idealized AGCM experiment with a fixed SST boundary forcing, it is shown that there is positive (negative) correlation between HF (2–90-day period) zonal-wind variance and LF (3-month average) zonal wind where the HF zonal-wind variance is positively (negatively) skewed because the stronger HF westerly (easterly) wind events than HF easterly (westerly) wind events induce a residual westerly (easterly), and it results in an additional rectified LF westerly (easterly) anomaly. This means that, over regions with positively skewed HF zonal winds, LF westerly anomalies are generated due to the residuals of the HF zonal winds. It implies that the LF zonal wind can be generated through internal processes of the atmosphere without external forcing and the interaction between LF and HF is not a one-way process from LF to HF but, rather, a two-way interaction process.

2015 ◽  
Vol 6 (2) ◽  
pp. 637-658 ◽  
Author(s):  
S. Lovejoy ◽  
L. del Rio Amador ◽  
R. Hébert

Abstract. On scales of ≈ 10 days (the lifetime of planetary-scale structures), there is a drastic transition from high-frequency weather to low-frequency macroweather. This scale is close to the predictability limits of deterministic atmospheric models; thus, in GCM (general circulation model) macroweather forecasts, the weather is a high-frequency noise. However, neither the GCM noise nor the GCM climate is fully realistic. In this paper we show how simple stochastic models can be developed that use empirical data to force the statistics and climate to be realistic so that even a two-parameter model can perform as well as GCMs for annual global temperature forecasts. The key is to exploit the scaling of the dynamics and the large stochastic memories that we quantify. Since macroweather temporal (but not spatial) intermittency is low, we propose using the simplest model based on fractional Gaussian noise (fGn): the ScaLIng Macroweather Model (SLIMM). SLIMM is based on a stochastic ordinary differential equation, differing from usual linear stochastic models (such as the linear inverse modelling – LIM) in that it is of fractional rather than integer order. Whereas LIM implicitly assumes that there is no low-frequency memory, SLIMM has a huge memory that can be exploited. Although the basic mathematical forecast problem for fGn has been solved, we approach the problem in an original manner, notably using the method of innovations to obtain simpler results on forecast skill and on the size of the effective system memory. A key to successful stochastic forecasts of natural macroweather variability is to first remove the low-frequency anthropogenic component. A previous attempt to use fGn for forecasts had disappointing results because this was not done. We validate our theory using hindcasts of global and Northern Hemisphere temperatures at monthly and annual resolutions. Several nondimensional measures of forecast skill – with no adjustable parameters – show excellent agreement with hindcasts, and these show some skill even on decadal scales. We also compare our forecast errors with those of several GCM experiments (with and without initialization) and with other stochastic forecasts, showing that even this simplest two parameter SLIMM is somewhat superior. In future, using a space–time (regionalized) generalization of SLIMM, we expect to be able to exploit the system memory more extensively and obtain even more realistic forecasts.


2014 ◽  
Vol 32 (4) ◽  
pp. 443-447 ◽  
Author(s):  
Y. Deng ◽  
A. J. Ridley

Abstract. The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM), which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.


2008 ◽  
Vol 33 (4) ◽  
pp. 495-507 ◽  
Author(s):  
K. P. Sooraj ◽  
Daehyun Kim ◽  
Jong-Seong Kug ◽  
Sang-Wook Yeh ◽  
Fei-Fei Jin ◽  
...  

2007 ◽  
Vol 20 (4) ◽  
pp. 765-771 ◽  
Author(s):  
Markus Jochum ◽  
Clara Deser ◽  
Adam Phillips

Abstract Atmospheric general circulation model experiments are conducted to quantify the contribution of internal oceanic variability in the form of tropical instability waves (TIWs) to interannual wind and rainfall variability in the tropical Pacific. It is found that in the tropical Pacific, along the equator, and near 25°N and 25°S, TIWs force a significant increase in wind and rainfall variability from interseasonal to interannual time scales. Because of the stochastic nature of TIWs, this means that climate models that do not take them into account will underestimate the strength and number of extreme events and may overestimate forecast capability.


2021 ◽  
Vol 3 ◽  
Author(s):  
Tomomichi Ogata ◽  
Yuya Baba

In this study, we examine the tropical cyclone (TC) activity over the western North Pacific (WNP) in 2018–2020 and its relationship with planetary scale convection and circulation anomalies, which play an important role for TC genesis. To determine the sea surface temperature (SST)-forced atmospheric variability, atmospheric general circulation model (AGCM) ensemble simulations are executed along with the observed SST. For AGCM experiments, we use two different convection schemes to examine uncertainty in convective parameterization and robustness of simulated atmospheric response. The observed TC activity and genesis potential demonstrated consistent features. In our AGCM ensemble simulations, the updated convection scheme improves the simulation ability of observed genesis potential as well as planetary scale convection and circulation features, e.g., in September–October–November (SON), a considerable increase in the genesis potential index over the WNP in SON 2018, WNP in SON 2019, and South China Sea (SCS) in SON 2020, which were not captured in the Emanuel scheme, have been simulated in the updated convection scheme.


2021 ◽  
pp. 1-51
Author(s):  
Yonatan Givon ◽  
Chaim I. Garfinkel ◽  
Ian White

AbstractAn intermediate complexity General Circulation Model is used to investigate the transient response of the NH winter stratosphere to modulated ultraviolet (UV) radiation by imposing a step-wise, deliberately exaggerated UV perturbation and analyzing the lagged response. Enhanced UV radiation is accompanied by an immediate warming of the tropical upper stratosphere. The warming then spreads into the winter subtropics due to an accelerated Brewer Dobson Circulation in the tropical upper stratosphere. The poleward meridional velocity in the subtropics leads to an increase in zonal wind in midlatitudes between 20N and 50N due to Coriolis torque. The increase in mid-latitude zonal wind is accompanied by a dipole in Eliassen-Palm flux convergence, with decreased convergence near the winter pole and increased convergence in mid-latitudes (where winds are strengthening due to the Coriolis torque); this dipole subsequently extends the anomalous westerlies to subpolar latitudes within the first ten days. The initial radiatively-driven acceleration of the Brewer-Dobson circulation due to enhanced shortwave absorption is replaced in the subpolar winter stratosphere by a wave-driven deceleration of the Brewer-Dobson circulation, and after a month the wave-driven deceleration of the Brewer-Dobson circulation encompasses most of the winter stratosphere. Approximately a month after UV is first modified, a significant poleward jet shift is evident in the troposphere. The results of this study may have implications for the observed stratospheric and tropospheric responses to solar variability associated with the 27-day solar rotation period, and also to solar variability on longer timescales.


2018 ◽  
Vol 31 (19) ◽  
pp. 8081-8099 ◽  
Author(s):  
Antonietta Capotondi ◽  
Prashant D. Sardeshmukh ◽  
Lucrezia Ricciardulli

El Niño–Southern Oscillation (ENSO) is commonly viewed as a low-frequency tropical mode of coupled atmosphere–ocean variability energized by stochastic wind forcing. Despite many studies, however, the nature of this broadband stochastic forcing and the relative roles of its high- and low-frequency components in ENSO development remain unclear. In one view, the high-frequency forcing associated with the subseasonal Madden–Julian oscillation (MJO) and westerly wind events (WWEs) excites oceanic Kelvin waves leading to ENSO. An alternative view emphasizes the role of the low-frequency stochastic wind components in directly forcing the low-frequency ENSO modes. These apparently distinct roles of the wind forcing are clarified here using a recently released high-resolution wind dataset for 1990–2015. A spectral analysis shows that although the high-frequency winds do excite high-frequency Kelvin waves, they are much weaker than their interannual counterparts and are a minor contributor to ENSO development. The analysis also suggests that WWEs should be viewed more as short-correlation events with a flat spectrum at low frequencies that can efficiently excite ENSO modes than as strictly high-frequency events that would be highly inefficient in this regard. Interestingly, the low-frequency power of the rapid wind forcing is found to be higher during El Niño than La Niña events, suggesting a role also for state-dependent (i.e., multiplicative) noise forcing in ENSO dynamics.


2020 ◽  
Vol 33 (16) ◽  
pp. 6989-7010 ◽  
Author(s):  
Lingfeng Tao ◽  
Xiu-Qun Yang ◽  
Jiabei Fang ◽  
Xuguang Sun

AbstractObserved wintertime atmospheric anomalies over the central North Pacific associated with the Pacific decadal oscillation (PDO) are characterized by a cold/trough (warm/ridge) structure, that is, an anomalous equivalent barotropic low (high) over a negative (positive) sea surface temperature (SST) anomaly. While the midlatitude atmosphere has its own strong internal variabilities, to what degree local SST anomalies can affect the midlatitude atmospheric variability remains unclear. To identify such an impact, three atmospheric general circulation model experiments each having a 63-yr-long simulation are conducted. The control run forced by observed global SST reproduces well the observed PDO-related cold/trough (warm/ridge) structure. However, the removal of the midlatitude North Pacific SST variabilities in the first sensitivity run reduces the atmospheric response by roughly one-third. In the second sensitivity run in which large-scale North Pacific SST variabilities are mostly kept, but their frontal-scale meridional gradients are sharply smoothed, simulated PDO-related cold/trough (warm/ridge) anomalies are also reduced by nearly one-third. Dynamical diagnoses exhibit that such a reduction is primarily due to the weakened transient eddy activities that are induced by weakened meridional SST gradient anomalies, in which the transient eddy vorticity forcing plays a crucial role. Therefore, it is suggested that midlatitude North Pacific SST anomalies make a considerable (approximately one-third) contribution to the observed PDO-related cold/trough (warm/ridge) anomalies in which the frontal-scale meridional SST gradient (oceanic front) is a key player, although most of those atmospheric anomalies are determined by the SST variabilities outside of the midlatitude North Pacific.


2012 ◽  
Vol 25 (16) ◽  
pp. 5587-5599 ◽  
Author(s):  
Evan Weller ◽  
Ming Feng ◽  
Harry Hendon ◽  
Jian Ma ◽  
Shang-Ping Xie ◽  
...  

Abstract Off the Western Australia coast, interannual variations of wind regime during the austral winter and spring are significantly correlated with the Indian Ocean dipole (IOD) and the southern annular mode (SAM) variability. Atmospheric general circulation model experiments forced by an idealized IOD sea surface temperature anomaly field suggest that the IOD-generated deep atmospheric convection anomalies trigger a Rossby wave train in the upper troposphere that propagates into the southern extratropics and induces positive geopotential height anomalies over southern Australia, independent of the SAM. The positive geopotential height anomalies extended from the upper troposphere to the surface, south of the Australian continent, resulting in easterly wind anomalies off the Western Australia coast and a reduction of the high-frequency synoptic storm events that deliver the majority of southwest Australia rainfall during austral winter and spring. In the marine environment, the wind anomalies and reduction of storm events may hamper the western rock lobster recruitment process.


Sign in / Sign up

Export Citation Format

Share Document