scholarly journals PDO-Related Wintertime Atmospheric Anomalies over the Midlatitude North Pacific: Local versus Remote SST Forcing

2020 ◽  
Vol 33 (16) ◽  
pp. 6989-7010 ◽  
Author(s):  
Lingfeng Tao ◽  
Xiu-Qun Yang ◽  
Jiabei Fang ◽  
Xuguang Sun

AbstractObserved wintertime atmospheric anomalies over the central North Pacific associated with the Pacific decadal oscillation (PDO) are characterized by a cold/trough (warm/ridge) structure, that is, an anomalous equivalent barotropic low (high) over a negative (positive) sea surface temperature (SST) anomaly. While the midlatitude atmosphere has its own strong internal variabilities, to what degree local SST anomalies can affect the midlatitude atmospheric variability remains unclear. To identify such an impact, three atmospheric general circulation model experiments each having a 63-yr-long simulation are conducted. The control run forced by observed global SST reproduces well the observed PDO-related cold/trough (warm/ridge) structure. However, the removal of the midlatitude North Pacific SST variabilities in the first sensitivity run reduces the atmospheric response by roughly one-third. In the second sensitivity run in which large-scale North Pacific SST variabilities are mostly kept, but their frontal-scale meridional gradients are sharply smoothed, simulated PDO-related cold/trough (warm/ridge) anomalies are also reduced by nearly one-third. Dynamical diagnoses exhibit that such a reduction is primarily due to the weakened transient eddy activities that are induced by weakened meridional SST gradient anomalies, in which the transient eddy vorticity forcing plays a crucial role. Therefore, it is suggested that midlatitude North Pacific SST anomalies make a considerable (approximately one-third) contribution to the observed PDO-related cold/trough (warm/ridge) anomalies in which the frontal-scale meridional SST gradient (oceanic front) is a key player, although most of those atmospheric anomalies are determined by the SST variabilities outside of the midlatitude North Pacific.

2021 ◽  
Vol 3 ◽  
Author(s):  
Tomomichi Ogata ◽  
Yuya Baba

In this study, we examine the tropical cyclone (TC) activity over the western North Pacific (WNP) in 2018–2020 and its relationship with planetary scale convection and circulation anomalies, which play an important role for TC genesis. To determine the sea surface temperature (SST)-forced atmospheric variability, atmospheric general circulation model (AGCM) ensemble simulations are executed along with the observed SST. For AGCM experiments, we use two different convection schemes to examine uncertainty in convective parameterization and robustness of simulated atmospheric response. The observed TC activity and genesis potential demonstrated consistent features. In our AGCM ensemble simulations, the updated convection scheme improves the simulation ability of observed genesis potential as well as planetary scale convection and circulation features, e.g., in September–October–November (SON), a considerable increase in the genesis potential index over the WNP in SON 2018, WNP in SON 2019, and South China Sea (SCS) in SON 2020, which were not captured in the Emanuel scheme, have been simulated in the updated convection scheme.


2014 ◽  
Vol 27 (11) ◽  
pp. 3889-3903 ◽  
Author(s):  
Satoru Okajima ◽  
Hisashi Nakamura ◽  
Kazuaki Nishii ◽  
Takafumi Miyasaka ◽  
Akira Kuwano-Yoshida

Abstract Sets of atmospheric general circulation model (AGCM) experiments are conducted to assess the importance of prominent positive anomalies in sea surface temperature (SST) observed over the midlatitude North Pacific in forcing a persistent basin-scale anticyclonic circulation anomaly and its downstream influence in 2011 summer and autumn. The anticyclonic anomaly observed in October is well reproduced as a robust response of an AGCM forced only with the warm SST anomaly associated with the poleward-shifted oceanic frontal zone in the midlatitude Pacific. The equivalent barotropic anticyclonic anomaly over the North Pacific is maintained under strong transient eddy feedback forcing associated with the poleward-deflected storm track. As the downstream influence of the anomaly, abnormal warmth and dryness observed over the northern United States and southern Canada in October are also reproduced to some extent. The corresponding AGCM response over the North Pacific to the tropical SST anomalies is similar but substantially weaker and less robust, suggesting the primary importance of the prominent midlatitude SST anomaly in forcing the large-scale atmospheric anomalies observed in October 2011. In contrast, the model reproduction of the atmospheric anomalies observed in summer was unsuccessful. This appears to arise from the fact that, unlike in October, the midlatitude SST anomalies accompanied reduction of heat and moisture release from the ocean, indicative of the atmospheric thermodynamic forcing on the SST anomalies. Furthermore, the distinct seasonality in the AGCM responses to the warm SST anomalies may also be contributed to by the seasonality of background westerlies and storm track.


2005 ◽  
Vol 18 (16) ◽  
pp. 3339-3355 ◽  
Author(s):  
C. J. C. Reason ◽  
D. Jagadheesha

Abstract The Southwestern Cape (SWC) region of South Africa is characterized by winter rainfall brought mainly via cold fronts and by substantial interannual variability. Previous work has found evidence that the interannual variability in SWC winter rainfall may be related to sea surface temperature (SST) in the South Atlantic Ocean and to large-scale ocean–atmosphere interaction in this region. During wet winters, SST tends to be anomalously warm (cool) in the southwest Atlantic and southeast Atlantic (central South Atlantic). Atmospheric general circulation model experiments with various idealized SST anomalies in the South Atlantic are used to explore mechanisms potentially associated with the rainfall variability. The model results suggest that the atmosphere is sensitive to subtropical–midlatitude SST anomalies in the South Atlantic during winter. Locally, there are changes to the jet position and strength, low-level relative vorticity, and convergence of moisture and latent heat flux that lead to changes in rainfall over the SWC. The model response to the SST forcing also shows large-scale anomalies in the midlatitude Southern Hemisphere circulation, namely, an Antarctic Oscillation–type mode and wavenumber-3 changes, similar to those observed during anomalous winters in the region.


2015 ◽  
Vol 28 (17) ◽  
pp. 6859-6881 ◽  
Author(s):  
Fei Zheng ◽  
Jianping Li ◽  
Lei Wang ◽  
Fei Xie ◽  
Xiaofeng Li

Abstract New evidence suggests that interannual variability in zonal-mean meridional circulation and precipitation can be partially attributed to the Southern Hemisphere annular mode (SAM), the dominant mode of climate variability in the Southern Hemisphere (SH) extratropics. A cross-seasonal correlation exists between the December–February (DJF) SAM and March–May (MAM) zonal-mean meridional circulation and precipitation. This correlation is not confined to the SH: it also extends to the Northern Hemisphere (NH) subtropics. When the preceding DJF SAM is positive, counterclockwise, and clockwise meridional cells, accompanied by less and more precipitation, occur alternately between the SH middle latitudes and NH subtropics in MAM. In particular, less precipitation occurs in the SH middle latitudes, the SH tropics, and the NH subtropics, but more precipitation occurs in the SH subtropics and the NH tropics. A framework is built to explain the cross-seasonal impact of SAM-related SST anomalies. Evidence indicates that the DJF SAM tends to lead to dipolelike SST anomalies in the SH extratropics, which are referred to in this study as the SH ocean dipole (SOD). The DJF SOD can persist until the following MAM when it begins to modulate MAM meridional circulation and large-scale precipitation. Atmospheric general circulation model simulations further verify that MAM meridional circulation between the SH middle latitudes and the northern subtropics responds to the MAM SOD.


1999 ◽  
Vol 12 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Xiaoli Wang ◽  
Peter H. Stone ◽  
Jochem Marotzke

Abstract A hybrid coupled ocean–atmosphere model is used to investigate the stability of the thermohaline circulation (THC) to an increase in the surface freshwater forcing in the presence of interactive meridional transports in the atmosphere. The ocean component is the idealized global general circulation model used in Part I. The atmospheric model assumes fixed latitudinal structure of the heat and moisture transports, and the amplitudes are calculated separately for each hemisphere from the large-scale sea surface temperature (SST) and SST gradient, using parameterizations based on baroclinic stability theory. The ocean–atmosphere heat and freshwater exchanges are calculated as residuals of the steady-state atmospheric budgets. Owing to the ocean component’s weak heat transport, the model has too strong a meridional SST gradient when driven with observed atmospheric meridional transports. When the latter are made interactive, the conveyor belt circulation collapses. A flux adjustment is introduced in which the efficiency of the atmospheric transports is lowered to match the too low efficiency of the ocean component. The feedbacks between the THC and both the atmospheric heat and moisture transports are positive, whether atmospheric transports are interactive in the Northern Hemisphere, the Southern Hemisphere, or both. However, the feedbacks operate differently in the Northern and Southern Hemispheres, because the Pacific THC dominates in the Southern Hemisphere, and deep water formation in the two hemispheres is negatively correlated. The feedbacks in the two hemispheres do not necessarily reinforce each other because they have opposite effects on low-latitude temperatures. The model is qualitatively similar in stability to one with conventional “additive” flux adjustment, but quantitatively more stable.


2021 ◽  
pp. 1-46
Author(s):  
Xiaohe An ◽  
Bo Wu ◽  
Tianjun Zhou ◽  
Bo Liu

AbstractInterdecadal Pacific Oscillation (IPO) and Atlantic Multidecadal Oscillation (AMO), two leading modes of decadal climate variability, are not independent. It was proposed that ENSO-like sea surface temperature (SST) variations play a central role in the Pacific responses to the AMO forcing. However, observational analyses indicate that the AMO-related SST anomalies in the tropical Pacific are far weaker than those in the extratropical North Pacific. Here, we show that SST in the North Pacific is tied to the AMO forcing by convective heating associated with precipitation over the tropical Pacific, instead of by SST there, based on an ensemble of pacemaker experiments with North Atlantic SST restored to the observation in a coupled general circulation model. The AMO modulates precipitation over the equatorial and tropical southwestern Pacific through exciting an anomalous zonal circulation and an interhemispheric asymmetry of net moist static energy input into the atmosphere. The convective heating associated with the precipitation anomalies drive SST variations in the North Pacific through a teleconnection, but remarkably weaken the ENSO-like SST anomalies through a thermocline damping effect. This study has implications that the IPO is a combined mode generated by both AMO forcing and local air-sea interactions, but the IPO-related global-warming acceleration/slowdown is independent of the AMO.


2011 ◽  
Vol 24 (4) ◽  
pp. 1154-1169 ◽  
Author(s):  
Hiroyuki Murakami ◽  
Bin Wang ◽  
Akio Kitoh

Abstract Projected future changes in tropical cyclone (TC) activity over the western North Pacific (WNP) under the Special Report on Emissions Scenarios (SRES) A1B emission scenario were investigated using a 20-km-mesh, very-high-resolution Meteorological Research Institute (MRI)–Japan Meteorological Agency (JMA) atmospheric general circulation model. The present-day (1979–2003) simulation yielded reasonably realistic climatology and interannual variability for TC genesis frequency and tracks. The future (2075–99) projection indicates (i) a significant reduction (by about 23%) in both TC genesis number and frequency of occurrence primarily during the late part of the year (September–December), (ii) an eastward shift in the positions of the two prevailing northward-recurving TC tracks during the peak TC season (July–October), and (iii) a significant reduction (by 44%) in TC frequency approaching coastal regions of Southeast Asia. The changes in occurrence frequency are due in part to changes in large-scale steering flows, but they are due mainly to changes in the locations of TC genesis; fewer TCs will form in the western portion of the WNP (west of 145°E), whereas more storms will form in the southeastern quadrant of the WNP (10°–20°N, 145°–160°E). Analysis of the genesis potential index reveals that the reduced TC genesis in the western WNP is due mainly to in situ weakening of large-scale ascent and decreasing midtropospheric relative humidity, which are associated with the enhanced descent of the tropical overturning circulation. The analysis also indicates that enhanced TC genesis in the southeastern WNP is due to increased low-level cyclonic vorticity and reduced vertical wind shear. These changes appear to be critically dependent on the spatial pattern of future sea surface temperature; therefore, it is necessary to conduct ensemble projections with a range of SST spatial patterns to understand the degree and distribution of uncertainty in future projections.


2017 ◽  
Vol 30 (2) ◽  
pp. 509-525 ◽  
Author(s):  
Guidi Zhou ◽  
Mojib Latif ◽  
Richard J. Greatbatch ◽  
Wonsun Park

By performing two sets of high-resolution atmospheric general circulation model (AGCM) experiments, the authors find that the atmospheric response to a sea surface temperature (SST) anomaly in the extratropical North Pacific is sensitive to decadal variations of the background SST on which the SST anomaly is superimposed. The response in the first set of experiments, in which the SST anomaly is superimposed on the observed daily SST of 1981–90, strongly differs from the response in the second experiment, in which the same SST anomaly is superimposed on the observed daily SST of 1991–2000. The atmospheric response over the North Pacific during 1981–90 is eddy mediated, equivalent barotropic, and concentrated in the east. In contrast, the atmospheric response during 1991–2000 is weaker and strongest in the west. The results are discussed in terms of Rossby wave dynamics, with the proposed primary wave source switching from baroclinic eddy vorticity forcing over the eastern North Pacific in 1981–90 to mean-flow divergence over the western North Pacific in 1991–2000. The wave source changes are linked to the decadal reduction of daily SST variability over the eastern North Pacific and strengthening of the Oyashio Extension front over the western North Pacific. Thus, both daily and frontal aspects of the background SST variability in determining the atmospheric response to extratropical North Pacific SST anomalies are emphasized by these AGCM experiments.


2010 ◽  
Vol 40 (8) ◽  
pp. 1748-1765 ◽  
Author(s):  
Shiro Nishikawa ◽  
Hiroyuki Tsujino ◽  
Kei Sakamoto ◽  
Hideyuki Nakano

Abstract The effects of mesoscale eddies on the subduction and distribution of the North Pacific Subtropical Mode Water (STMW) are investigated using an eddy-resolving ocean general circulation model (OGCM). First, the subduction rate is calculated and the contribution of eddies to the subduction of STMW is estimated. It is found that eddy subduction significantly contributes to the total subduction of STMW. Second, eddy thickness transport and diapycnal flux are directly diagnosed to investigate the large-scale eddy-induced transport process of STMW. The large southward eddy thickness transport in the STMW core density is consistent with eddy subduction. The eddy transport on the isopycnal surface of STMW is directed down the thickness gradient and traverses the mean flow. The meridional eddy transport streamfunction indicates two eddy circulation cells south of 30°N, associated with the circulation of STMW. These cells flatten density surfaces, similar to the effect of the Gent and McWilliams (GM) scheme. The subducted STMW is gradually dissipated to lower or higher densities in the main thermocline, basically by vertical diffusion. Finally, local processes of eddy subduction and transport of STMW are explored using an anticyclonic eddy. Results imply two possible local processes of the eddy subduction of STMW. One is the destruction of a potential vorticity (PV) gradient by eddy mixing, where the PV gradient is due to winter deep mixed layer formation. The other is the southward translation of anticyclonic eddies that accompany low PV.


2006 ◽  
Vol 19 (9) ◽  
pp. 1802-1819 ◽  
Author(s):  
Shuanglin Li ◽  
Martin P. Hoerling ◽  
Shiling Peng ◽  
Klaus M. Weickmann

Abstract The leading pattern of Northern Hemisphere winter height variability exhibits an annular structure, one related to tropical west Pacific heating. To explore whether this pattern can be excited by tropical Pacific SST variations, an atmospheric general circulation model coupled to a slab mixed layer ocean is employed. Ensemble experiments with an idealized SST anomaly centered at different longitudes on the equator are conducted. The results reveal two different response patterns—a hemispheric pattern projecting on the annular mode and a meridionally arched pattern confined to the Pacific–North American sector, induced by the SST anomaly in the west and the east Pacific, respectively. Extratropical air–sea coupling enhances the annular component of response to the tropical west Pacific SST anomalies. A diagnosis based on linear dynamical models suggests that the two responses are primarily maintained by transient eddy forcing. In both cases, the model transient eddy forcing response has a maximum near the exit of the Pacific jet, but with a different meridional position relative to the upper-level jet. The emergence of an annular response is found to be very sensitive to whether transient eddy forcing anomalies occur within the axis of the jet core. For forcing within the jet core, energy propagates poleward and downstream, inducing an annular response. For forcing away from the jet core, energy propagates equatorward and downstream, inducing a trapped regional response. The selection of an annular versus a regionally confined tropospheric response is thus postulated to depend on how the storm tracks respond. Tropical west Pacific SST forcing is particularly effective in exciting the required storm-track response from which a hemisphere-wide teleconnection structure emerges.


Sign in / Sign up

Export Citation Format

Share Document