scholarly journals Coupled Ocean–Atmosphere Variations over the South Atlantic Ocean

2012 ◽  
Vol 25 (18) ◽  
pp. 6349-6358 ◽  
Author(s):  
Paulo Nobre ◽  
Roberto A. De Almeida ◽  
Marta Malagutti ◽  
Emanuel Giarolla

Abstract The impact of ocean–atmosphere interactions on summer rainfall over the South Atlantic Ocean is explored through the use of coupled ocean–atmosphere models. The Brazilian Center for Weather Forecast and Climate Studies (CPTEC) coupled ocean–atmosphere general circulation model (CGCM) and its atmospheric general circulation model (AGCM) are used to gauge the role of coupled modes of variability of the climate system over the South Atlantic at seasonal time scales. Twenty-six years of summer [December–February (DJF)] simulations were done with the CGCM in ensemble mode and the AGCM forced with both observed sea surface temperature (SST) and SST generated by the CGCM forecasts to investigate the dynamics/thermodynamics of the two major convergence zones in the tropical Atlantic: the intertropical convergence zone (ITCZ) and the South Atlantic convergence zone (SACZ). The results present both numerical model and observational evidence supporting the hypothesis that the ITCZ is a thermally direct, SST-driven atmospheric circulation, while the SACZ is a thermally indirect atmospheric circulation controlling SST variability underneath—a consequence of ocean–atmosphere interactions not captured by the atmospheric model forced by prescribed ocean temperatures. Six CGCM model results of the Ensemble-based Predictions of Climate Changes and their Impacts (ENSEMBLES) project, NCEP–NCAR reanalysis data, and oceanic and atmospheric data from buoys of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) Project over the tropical Atlantic are used to validate CPTEC’s coupled and uncoupled model simulations.

2011 ◽  
Vol 41 (9) ◽  
pp. 1659-1672 ◽  
Author(s):  
Stefano Berti ◽  
Francisco Alves Dos Santos ◽  
Guglielmo Lacorata ◽  
Angelo Vulpiani

Abstract In the framework of Monitoring by Ocean Drifters (MONDO) project, a set of Lagrangian drifters were released in proximity of the Brazil Current, the western branch of the subtropical gyre in the South Atlantic Ocean. The experimental strategy of deploying part of the buoys in clusters offers the opportunity to examine relative dispersion on a wide range of scales. Adopting a dynamical systems approach, the authors focus their attention on scale-dependent indicators, like the finite-scale Lyapunov exponent (FSLE) and the finite-scale (mean square) relative velocity (FSRV) between two drifters as a function of their separation and compare them with classic time-dependent statistical quantities like the mean-square relative displacement between two drifters and the effective diffusivity as functions of the time lag from the release. The authors find that, dependently on the given observable, the quasigeostrophic turbulence scenario is overall compatible with their data analysis, with discrepancies from the expected behavior of 2D turbulent trajectories likely to be ascribed to the nonstationary and nonhomogeneous characteristics of the flow, as well as to possible ageostrophic effects. Submesoscale features of ~O(1) km are considered to play a role, to some extent, in determining the properties of relative dispersion as well as the shape of the energy spectrum. The authors also present numerical simulations of an ocean general circulation model (OGCM) of the South Atlantic and discuss the comparison between experimental and model data about mesoscale dispersion.


2009 ◽  
Vol 699 (1) ◽  
pp. 564-584 ◽  
Author(s):  
Adam P. Showman ◽  
Jonathan J. Fortney ◽  
Yuan Lian ◽  
Mark S. Marley ◽  
Richard S. Freedman ◽  
...  

2007 ◽  
Vol 20 (14) ◽  
pp. 3345-3365 ◽  
Author(s):  
Sylwia Trzaska ◽  
Andrew W. Robertson ◽  
John D. Farrara ◽  
Carlos R. Mechoso

Abstract Interannual variability in the southern and equatorial Atlantic is investigated using an atmospheric general circulation model (AGCM) coupled to a slab ocean model (SOM) in the Atlantic in order to isolate features of air–sea interactions particular to this basin. Simulated covariability between sea surface temperatures (SSTs) and atmosphere is very similar to the observed non-ENSO-related covariations in both spatial structures and time scales. The leading simulated empirical coupled mode resembles the zonal mode in the tropical Atlantic, despite the lack of ocean dynamics, and is associated with baroclinic atmospheric anomalies in the Tropics and a Rossby wave train extending to the extratropics, suggesting an atmospheric response to tropical SST forcing. The second non-ENSO mode is the subtropical dipole in the SST with a mainly equivalent barotropic atmospheric anomaly centered on the subtropical high and associated with a midlatitude wave train, consistent with atmospheric forcing of the subtropical SST. The power spectrum of the tropical mode in both simulation and observation is red with two major interannual peaks near 5 and 2 yr. The quasi-biennial component exhibits a progression between the subtropics and the Tropics. It is phase locked to the seasonal cycle and owes its existence to the imbalances between SST–evaporation and SST–shortwave radiation feedbacks. These feedbacks are found to be reversed between the western and eastern South Atlantic, associated with the dominant role of deep convection in the west and that of shallow clouds in the east. A correct representation of tropical–extratropical interactions and of deep and shallow clouds may thus be crucial to the simulation of realistic interannual variability in the southern and tropical Atlantic.


Sign in / Sign up

Export Citation Format

Share Document