scholarly journals Statistical Characterization of Arctic Polar-Night Jet Oscillation Events

2013 ◽  
Vol 26 (6) ◽  
pp. 2096-2116 ◽  
Author(s):  
Peter Hitchcock ◽  
Theodore G. Shepherd ◽  
Gloria L. Manney

Abstract A novel diagnostic tool is presented, based on polar-cap temperature anomalies, for visualizing daily variability of the Arctic stratospheric polar vortex over multiple decades. This visualization illustrates the ubiquity of extended-time-scale recoveries from stratospheric sudden warmings, termed here polar-night jet oscillation (PJO) events. These are characterized by an anomalously warm polar lower stratosphere that persists for several months. Following the initial warming, a cold anomaly forms in the middle stratosphere, as does an anomalously high stratopause, both of which descend while the lower-stratospheric anomaly persists. These events are characterized in four datasets: Microwave Limb Sounder (MLS) temperature observations; the 40-yr ECMWF Re-Analysis (ERA-40) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalyses; and an ensemble of three 150-yr simulations from the Canadian Middle Atmosphere Model. The statistics of PJO events in the model are found to agree very closely with those of the observations and reanalyses. The time scale for the recovery of the polar vortex following sudden warmings correlates strongly with the depth to which the warming initially descends. PJO events occur following roughly half of all major sudden warmings and are associated with an extended period of suppressed wave-activity fluxes entering the polar vortex. They follow vortex splits more frequently than they do vortex displacements. They are also related to weak vortex events as identified by the northern annular mode; in particular, those weak vortex events followed by a PJO event show a stronger tropospheric response. The long time scales, predominantly radiative dynamics, and tropospheric influence of PJO events suggest that they represent an important source of conditional skill in seasonal forecasting.

2005 ◽  
Vol 5 (4) ◽  
pp. 7457-7496 ◽  
Author(s):  
A. Engel ◽  
T. Möbius ◽  
H.-P. Haase ◽  
H. Bönisch ◽  
T. Wetter ◽  
...  

Abstract. During several balloon flights inside the Arctic polar vortex in early 2003, unusual trace gas distributions were observed, which indicate a strong influence of mesospheric air in the stratosphere. The tuneable diode laser (TDL) instrument SPIRALE (Spectroscopie InFrarouge par Absorption de Lasers Embarqués) measured unusually high CO values (up to 600 ppb) on 27 January at about 30 km altitude. The cryosampler BONBON sampled air masses with very high molecular Hydrogen, extremely low SF6 and enhanced CO values on 6 March at about 25 km altitude. Finally, the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) Fourier Transform Infra-Red (FTIR) spectrometer showed NOy values which are significantly higher than NOy* (the NOy derived from a correlation between N2O and NOy under undisturbed conditions), on 21 and 22 March in a layer centred at 22 km altitude. Thus, the mesospheric air seems to have been present in a layer descending from about 30 km in late January to 25 km altitude in early March and about 22 km altitude on 20 March. We present corroborating evidence from a model study using the KASIMA (KArlsruhe Simulation model of the Middle Atmosphere) model that also shows a layer of mesospheric air, which descended into the stratosphere in November and early December 2002, before the minor warming which occurred in late December 2002 lead to a descent of upper stratospheric air, cutting of a layer in which mesospheric air is present. This layer then descended inside the vortex over the course of the winter. The same feature is found in trajectory calculations, based on a large number of trajectories started in the vicinity of the observations on 6 March. Based on the difference between the mean age derived from SF6 (which has an irreversible mesospheric loss) and from CO2 (whose mesospheric loss is much smaller and reversible) we estimate that the fraction of mesospheric air in the layer observed on 6 March, must have been somewhere between 35% and 100%.


2013 ◽  
Vol 70 (2) ◽  
pp. 688-707 ◽  
Author(s):  
Peter Hitchcock ◽  
Theodore G. Shepherd

Abstract The recovery of the Arctic polar vortex following stratospheric sudden warmings is found to take upward of 3 months in a particular subset of cases, termed here polar-night jet oscillation (PJO) events. The anomalous zonal-mean circulation above the pole during this recovery is characterized by a persistently warm lower stratosphere, and above this a cold midstratosphere and anomalously high stratopause, which descends as the event unfolds. Composites of these events in the Canadian Middle Atmosphere Model show the persistence of the lower-stratospheric anomaly is a result of strongly suppressed wave driving and weak radiative cooling at these heights. The upper-stratospheric and lower-mesospheric anomalies are driven immediately following the warming by anomalous planetary-scale eddies, following which, anomalous parameterized nonorographic and orographic gravity waves play an important role. These details are found to be robust for PJO events (as opposed to sudden warmings in general) in that many details of individual PJO events match the composite mean. A zonal-mean quasigeostrophic model on the sphere is shown to reproduce the response to the thermal and mechanical forcings produced during a PJO event. The former is well approximated by Newtonian cooling. The response can thus be considered as a transient approach to the steady-state, downward control limit. In this context, the time scale of the lower-stratospheric anomaly is determined by the transient, radiative response to the extended absence of wave driving. The extent to which the dynamics of the wave-driven descent of the stratopause can be considered analogous to the descending phases of the quasi-biennial oscillation (QBO) is also discussed.


2006 ◽  
Vol 6 (1) ◽  
pp. 267-282 ◽  
Author(s):  
A. Engel ◽  
T. Möbius ◽  
H.-P. Haase ◽  
H. Bönisch ◽  
T. Wetter ◽  
...  

Abstract. During several balloon flights inside the Arctic polar vortex in early 2003, unusual trace gas distributions were observed, which indicate a strong influence of mesospheric air in the stratosphere. The tuneable diode laser (TDL) instrument SPIRALE (Spectroscopie Infra-Rouge par Absorption de Lasers Embarqués) measured unusually high CO values (up to 600 ppb) on 27 January at about 30 km altitude. The cryosampler BONBON sampled air masses with very high molecular Hydrogen, extremely low SF6 and enhanced CO values on 6 March at about 25 km altitude. Finally, the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) Fourier Transform Infra-Red (FTIR) spectrometer showed NOy values which are significantly higher than NOy* (the NOy derived from a correlation between N2O and NOy under undisturbed conditions), on 21 and 22 March in a layer centred at 22 km altitude. Thus, the mesospheric air seems to have been present in a layer descending from about 30 km in late January to 25 km altitude in early March and about 22 km altitude on 20 March. We present corroborating evidence from a model study using the KASIMA (KArlsruhe SImulation model of the Middle Atmosphere) model that also shows a layer of mesospheric air, which descended into the stratosphere in November and early December 2002, before the minor warming which occurred in late December 2002 lead to a descent of upper stratospheric air, cutting off a layer in which mesospheric air is present. This layer then descended inside the vortex over the course of the winter. The same feature is found in trajectory calculations, based on a large number of trajectories started in the vicinity of the observations on 6 March. Based on the difference between the mean age derived from SF6 (which has an irreversible mesospheric loss) and from CO2 (whose mesospheric loss is much smaller and reversible) we estimate that the fraction of mesospheric air in the layer observed on 6 March, must have been somewhere between 35% and 100%.


2011 ◽  
Vol 68 (6) ◽  
pp. 1273-1289 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Dennis L. Hartmann

Abstract A dry primitive equation model is used to explain how the quasi-biennial oscillation (QBO) of the tropical stratosphere can influence the troposphere, even in the absence of tropical convection anomalies and a variable stratospheric polar vortex. QBO momentum anomalies induce a meridional circulation to maintain thermal wind balance. This circulation includes zonal wind anomalies that extend from the equatorial stratosphere into the subtropical troposphere. In the presence of extratropical eddies, the zonal wind anomalies are intensified and extend downward to the surface. The tropospheric response differs qualitatively between integrations in which the subtropical jet is strong and integrations in which the subtropical jet is weak. While fluctuation–dissipation theory provides a guide to predicting the response in some cases, significant nonlinearity in others, particularly those designed to model the midwinter subtropical jet of the North Pacific, prevents its universal application. When the extratropical circulation is made zonally asymmetric, the response to the QBO is greatest in the exit region of the subtropical jet. The dry model is able to simulate much of the Northern Hemisphere wintertime tropospheric response to the QBO observed in reanalysis datasets and in long time integrations of the Whole Atmosphere Community Climate Model (WACCM).


2021 ◽  
Author(s):  
Andreas Dörnbrack

<table><tbody><tr><td> <p><span>Planetary waves disturbed the hitherto stable Arctic stratospheric polar vortex mid of<br>January 2016 in such a way that unique tropospheric and stratospheric flow conditions<br>for vertically and horizontally propagating mountain waves developed. Co-existing<br>strong low-level westerly winds across almost all European mountain ranges plus the<br>almost zonally-aligned polar front jet created these favorable conditions for deeply<br>propagating gravity waves. Furthermore, the northward displacement of the polar night<br>jet resulted in a wide-spread coverage of stratospheric mountain waves trailling across<br>northern Europe. This paper describes the particular meteorological setting by<br>analyzing the tropospheric and stratospheric flows based on the ERA5 data. The<br>potential of the flow for exciting internal gravity waves from non-orographic sources is<br>evaluated across all altitudes by considering various instability indices as δ , Ro, Ro ζ , Ro<sub>⊥</sub> ,<br>and Δ NBE</span><span>. </span></p> <p><span>The analyzed gravity waves are described and characterized in terms of<br>commonly used parameters. The main finding of this case study is the exceptionally<br>vast extension of the mountain waves trailing to high latitudes originating from the flow<br>across the mountainous sources that are located at about 45 N. As a useful addition to<br>the case study, tracks for potential research flights are proposed that sample the<br>waves by a vertically pointing airborne remote-sensing instrument. Benefits and<br>drawbacks of the different approaches to observe the meridional focussing of the<br>mountain waves into the polar night jet are discussed.</span></p> </td> </tr></tbody></table><p> </p>


2019 ◽  
Author(s):  
Franziska Schranz ◽  
Brigitte Tschanz ◽  
Rolf Rüfenacht ◽  
Klemens Hocke ◽  
Mathias Palm ◽  
...  

Abstract. We use 3 years of water vapour and ozone measurements to analyse dynamical events in the polar middle atmosphere such as sudden stratospheric warmings (SSW), polar vortex shifts, water vapour descent rates and periodicities. The measurements were performed with the two ground-based microwave radiometers MIAWARA-C and GROMOS-C which are co-located at the AWIPEV research base at Ny-Ålesund, Svalbard (79° N, 12° E) since September 2015. The almost continuous datasets of water vapour and ozone are characterised by a high time resolution in the order of hours. A thorough intercomparison of these datasets with models and measurements from satellite, ground-based and in-situ instruments was performed. In the upper stratosphere and lower mesosphere the MIAWARA-C profiles agree within 5 % with SD-WACCM simulations and ACE-FTS measurements whereas AuraMLS measurements show an average offset of 10–15 % depending on altitude but constant in time. Stratospheric GROMOS-C profiles are within 5 % of the satellite instruments AuraMLS and ACE-FTS and the ground-based microwave radiometer OZORAM which is also located at Ny-Ålesund. During these first three years of the measurement campaign typical phenomena of the Arctic middle atmosphere took place and we analysed their signatures in the water vapour and ozone datasets. Inside of the polar vortex in autumn we found the descent rate of mesospheric water vapour to be 435 m/day on average. In early 2017 distinct increases in mesospheric water vapour of about 2 ppm were observed when the polar vortex was displaced and midlatitude air was brought to Ny-Ålesund. Two major sudden stratospheric warmings took place in March 2016 and February 2018 where ozone enhancements of up to 4 ppm were observed. The zonal wind reversals accompanying a major SSW were captured in the GROMOS-C wind profiles which are retrieved from the ozone spectra. After the SSW in February 2018 the polar vortex re-established and the water vapour descent rate in the mesosphere was 355 m/day. In the water vapour and ozone time series signatures of atmospheric waves with periods close to 2, 5, 10 and 16 days were found.


2009 ◽  
Vol 9 (13) ◽  
pp. 4407-4417 ◽  
Author(s):  
S. Lossow ◽  
M. Khaplanov ◽  
J. Gumbel ◽  
J. Stegman ◽  
G. Witt ◽  
...  

Abstract. The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E) with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios. From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1) a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.


2017 ◽  
Vol 30 (12) ◽  
pp. 4463-4475 ◽  
Author(s):  
Liwei Jia ◽  
Xiaosong Yang ◽  
Gabriel Vecchi ◽  
Richard Gudgel ◽  
Thomas Delworth ◽  
...  

This study explores the role of the stratosphere as a source of seasonal predictability of surface climate over Northern Hemisphere extratropics both in the observations and climate model predictions. A suite of numerical experiments, including climate simulations and retrospective forecasts, are set up to isolate the role of the stratosphere in seasonal predictive skill of extratropical near-surface land temperature. It is shown that most of the lead-0-month spring predictive skill of land temperature over extratropics, particularly over northern Eurasia, stems from stratospheric initialization. It is further revealed that this predictive skill of extratropical land temperature arises from skillful prediction of the Arctic Oscillation (AO). The dynamical connection between the stratosphere and troposphere is also demonstrated by the significant correlation between the stratospheric polar vortex and sea level pressure anomalies, as well as the migration of the stratospheric zonal wind anomalies to the lower troposphere.


2015 ◽  
Vol 28 (22) ◽  
pp. 8951-8967 ◽  
Author(s):  
Hae-Jeong Kim ◽  
Joong-Bae Ahn

Abstract This study verifies the impact of improved ocean initial conditions on the Arctic Oscillation (AO) forecast skill by assessing the one-month lead predictability of boreal winter AO using the Pusan National University (PNU) coupled general circulation model (CGCM). Hindcast experiments were performed on two versions of the model, one does not use assimilated ocean initial data (V1.0) and one does (V1.1), and the results were comparatively analyzed. The forecast skill of V1.1 was superior to that of V1.0 in terms of the correlation coefficient between the predicted and observed AO indices. In the regression analysis, V1.1 showed more realistic spatial similarities than V1.0 did in predicted sea surface temperature and atmospheric circulation fields. The authors suggest the relative importance of the contribution of the ocean initial condition to the AO forecast skill was because the ocean data assimilation increased the predictability of the AO, to some extent, through the improved interaction between tropical forcing induced by realistic sea surface temperature (SST) and atmospheric circulation. In V1.1, as in the observation, the cold equatorial Pacific SST anomalies generated the weakened tropical convection and Hadley circulation over the Pacific, resulting in a decelerated subtropical jet and accelerated polar front jet in the extratropics. The intensified polar front jet implies a stronger stratospheric polar vortex relevant to the positive AO phase; hence, surface manifestations of the reflected positive AO phase were then induced through the downward propagation of the stratospheric polar vortex. The results suggest that properly assimilated initial ocean conditions might contribute to improve the predictability of global oscillations, such as the AO, through large-scale tropical ocean–atmosphere interaction.


Sign in / Sign up

Export Citation Format

Share Document