scholarly journals Atmospheric Meridional Moisture Flux over the Southern Ocean: A Story of the Amundsen Sea

2013 ◽  
Vol 26 (20) ◽  
pp. 8055-8064 ◽  
Author(s):  
Maria Tsukernik ◽  
Amanda H. Lynch

Abstract The Antarctic ice sheet constitutes the largest reservoir of freshwater on earth, representing tens of meters of sea level rise if it were to melt completely. However, because of the remote location of the continent and the concomitant sparse data coverage, much remains unknown regarding the climate variability in Antarctica and the surrounding Southern Ocean. This study uses the high-resolution ECMWF Interim Re-Analysis (ERA-Interim) data during 1979–2010 to calculate the meridional moisture transport associated with the mean circulation, planetary waves, and synoptic-scale systems. The resulting moisture flux, which is dominated by the synoptic scales, is largely consistent with results from theoretical assumptions and previous studies. Here, high interannual and regional variability in the total meridional moisture flux is found, with no significant trend over the last 30 years. Further, the variability of the meridional moisture flux cannot be explained by the southern annular mode or El Niño–Southern Oscillation, even in the Pacific sector. In addition, the Amundsen Sea sector experiences the highest variability in meridional moisture transport and reveals a statistically significant decrease in the moisture flux at synoptic scales along the coastal zone. These results suggest that the Amundsen Sea provides a window on the complex nature of atmospheric moisture transport in the high southern latitudes.

2017 ◽  
Author(s):  
Imogen M. Browne ◽  
Christopher M. Moy ◽  
Christina R. Riesselman ◽  
Helen L. Neil ◽  
Lorelei G. Curtin ◽  
...  

Abstract. The Southern Hemisphere westerly winds (SHWW) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean on interannual to glacial-interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of paleoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene variability in the SHWW using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Drainage basin response to variability in the strength of the SHWW at this latitude is reconstructed from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C/N, which monitor influxes of lithogenous and terrestrial vs marine organic matter, respectively. The hydrographic response to SHWW variability is reconstructed using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from ~ 1600–900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of vegetation response to climate at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand at the beginning of the Little Ice Age (LIA). Comparison with paleoclimate and paleoceanographic records from southern South America and the western Antarctic Peninsula indicates a late Holocene strengthening of the SHWW after ~ 1600 yr BP that appears to be broadly symmetrical across the Pacific basin, although our reconstruction suggests that this symmetry breaks down during the LIA. Contemporaneous increases in SHWW at localities either side of the Pacific in the late Holocene are likely controlled atmospheric teleconnections between the low and high latitudes and by variability in the Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO).


2019 ◽  
Vol 10 (2) ◽  
pp. 319-331 ◽  
Author(s):  
David Gallego ◽  
Ricardo García-Herrera ◽  
Francisco de Paula Gómez-Delgado ◽  
Paulina Ordoñez-Perez ◽  
Pedro Ribera

Abstract. In this paper, we develop an instrumental index based on historical wind direction observations aimed to quantify the moisture transport from the tropical Pacific to Central and northern South America at a monthly scale. This transport is mainly driven by the so-called “Chocó jet”, a low-level westerly jet whose core is located at 5∘ N and 80∘ W. The Chocó jet is profoundly related to the dynamics of the Intertropical Convergence Zone in the eastern equatorial Pacific and it is responsible for up to 30 % of the total precipitation in these areas. We have been able to produce an index for this transport starting in the 19th century, adding almost a century of data to previous comparable indices. Our results indicate that the seasonal distribution of the precipitation in Central America has changed throughout the 20th century as a response to the changes in the Chocó jet, decreasing (increasing) its strength in July (September). Additionally, we have found that in general, the relationship between the Chocó jet and the El Niño–Southern Oscillation has been remarkably stable throughout the entire 20th century, a finding particularly significant because the stability of this relation is usually the basis of the hydrologic reconstructions in northern South America.


2020 ◽  
Author(s):  
Michelle Maclennan ◽  
Jan Lenaerts

<p>High snowfall events on Thwaites Glacier are a key influencer of its ice mass change. In this study, we diagnose the mechanisms for orographic precipitation on Thwaites Glacier by analyzing the atmospheric conditions that lead to high snowfall events. A high-resolution regional climate model, RACMO2, is used in conjunction with MERRA-2 and ERA5 reanalysis to map snowfall and associated atmospheric conditions over the Amundsen Sea Embayment. We examine these conditions during high snowfall events over Thwaites Glacier to characterize the drivers of the precipitation and their spatial and temporal variability. Then we examine the seasonal differences in the associated weather patterns and their correlations with El Nino Southern Oscillation and the Southern Annular Mode. Understanding the large-scale atmospheric drivers of snowfall events allows us to recognize how these atmospheric drivers and consequent snowfall climatology will change in the future, which will ultimately improve predictions of accumulation on Thwaites Glacier.</p>


2020 ◽  
Vol 33 (24) ◽  
pp. 10653-10670
Author(s):  
M. J. Manton ◽  
Y. Huang ◽  
S. T. Siems

AbstractThe Southern Ocean lies beneath a unique region of the global atmosphere with minimal effects of landmasses on the zonal flow. The absence of landmasses also means that in situ observations of precipitation are limited to a few ocean islands. Two reanalyses and two satellite-based gridded datasets are analyzed to estimate the character of the distribution of precipitation across the region. The latitudinal variation is computed across three longitudinal sectors, representing the Pacific, Atlantic, and Indian Oceans. The most recent ECMWF reanalysis (ERA5) is found to produce the most accurate estimate of the mean profile and seasonal cycle of precipitation. However, there is little consistency in the estimates of trends in monthly anomalies of precipitation. A more consistent description of precipitation trends is found by using linear regression of the precipitation anomaly with the local mean sea level pressure anomaly, the southern annular mode, and the Southern Oscillation index. In broad terms, precipitation is found to be decreasing at lower latitudes and increasing at higher latitudes, which is consistent with earlier climate model simulations on the impacts of anthropogenic climate change.


2006 ◽  
Vol 19 (6) ◽  
pp. 979-997 ◽  
Author(s):  
Ryan L. Fogt ◽  
David H. Bromwich

Abstract Decadal variability of the El Niño–Southern Oscillation (ENSO) teleconnection to the high-latitude South Pacific is examined by correlating the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr Re-Analysis (ERA-40) and observations with the Southern Oscillation index (SOI) over the last two decades. There is a distinct annual contrast between the 1980s and the 1990s, with the strong teleconnection in the 1990s being explained by an enhanced response during austral spring. Geopotential height anomaly composites constructed during the peak ENSO seasons also demonstrate the decadal variability. Empirical orthogonal function (EOF) analysis reveals that the 1980s September–November (SON) teleconnection is weak due to the interference between the Pacific–South American (PSA) pattern associated with ENSO and the Southern Annular Mode (SAM). An in-phase relationship between these two modes during SON in the 1990s amplifies the height and pressure anomalies in the South Pacific, producing the strong teleconnections seen in the correlation and composite analyses. The in-phase relationship between the tropical and high-latitude forcing also exists in December–February (DJF) during the 1980s and 1990s. These results suggest that natural climate variability plays an important role in the variability of SAM, in agreement with a growing body of literature. Additionally, the significantly positive correlation between ENSO and SAM only during times of strong teleconnection suggests that both the Tropics and the high latitudes need to work together in order for ENSO to strongly influence Antarctic climate.


2015 ◽  
Vol 28 (23) ◽  
pp. 9350-9372 ◽  
Author(s):  
David P. Schneider ◽  
Clara Deser ◽  
Tingting Fan

Abstract Westerly wind trends at 850 hPa over the Southern Ocean during 1979–2011 exhibit strong regional and seasonal asymmetries. On an annual basis, trends in the Pacific sector (40°–60°S, 70°–160°W) are 3 times larger than zonal-mean trends related to the increase in the southern annular mode (SAM). Seasonally, the SAM-related trend is largest in austral summer, and many studies have linked this trend with stratospheric ozone depletion. In contrast, the Pacific sector trends are largest in austral autumn. It is proposed that these asymmetries can be explained by a combination of tropical teleconnections and polar ozone depletion. Six ensembles of transient atmospheric model experiments, each forced with different combinations of time-dependent radiative forcings and SSTs, support this idea. In summer, the model simulates a positive SAM-like pattern, to which ozone depletion and tropical SSTs (which contain signatures of internal variability and warming from greenhouse gasses) contribute. In autumn, the ensemble-mean response consists of stronger westerlies over the Pacific sector, explained by a Rossby wave originating from the central equatorial Pacific. While these responses resemble observations, attribution is complicated by intrinsic atmospheric variability. In the experiments forced only with tropical SSTs, individual ensemble members exhibit wind trend patterns that mimic the forced response to ozone. When the analysis presented herein is applied to 1960–2000, the primary period of ozone loss, ozone depletion largely explains the model’s SAM-like zonal wind trend. The time-varying importance of these different drivers has implications for relating the historical experiments of free-running, coupled models to observations.


2005 ◽  
Vol 41 ◽  
pp. 140-146 ◽  
Author(s):  
N.G. Patterson ◽  
N.A.N. Bertler ◽  
T.R. Naish ◽  
U. Morgenstern

AbstractThe El Niño–Southern Oscillation (ENSO) signal in coastal Antarctic precipitation is evaluated using deuterium-excess data measured from an ice core located at Victoria Lower Glacier (VLG) Dome, McMurdo Dry Valleys. Recent studies suggest that interannual variations in the intensity and position of the Amundsen Sea low, a low-pressure centre that controls moisture flux in the West Antarctic sector, is modulated by the ENSO. Deuterium-excess values from the VLG ice core, which serve as a proxy for changes in regional moisture flux, exhibit oscillations of equivalent duration to those observed in the Southern Oscillation Index (SOI). Results of cross-spectral analyses show that temporal fluctuations in deuterium excess and the SOI covary and are coherent at ~4.9, 3.6, 3.0, 2.6, 2.4 and 2.0 year frequencies between 1950 and 2000. We ascribe this covariance to shifts in the source and transport pathway of precipitation that is deposited in coastal Victoria Land as a consequence of ENSO’s influence. High values of deuterium excess are consistent with increased meridional flow carrying warm, moist air southward across the Ross Sea when the low-pressure centre is positioned to the north of the Ross Ice Shelf (La Niña mode). Low deuterium-excess values, which reflect a more westerly to southerly flow across the West Antarctic ice sheet and Ross Ice Shelf leading to cooler and drier en-route conditions, occur when the low-pressure centre is positioned above the Amundsen Sea (El Niño mode).


2004 ◽  
Vol 16 (4) ◽  
pp. 401-413 ◽  
Author(s):  
IAN SIMMONDS ◽  
JOHN C. KING

The hemispheric and regional atmospheric circulation influences the Southern Ocean in many and profound ways, including intense air-sea fluxes of momentum, energy, fresh water and dissolved gases. The Southern Ocean ventilates a large fraction of the world ocean and hence these influences are spread globally. We use the NCEP-2 reanalysis data set to diagnose aspects of the large-scale atmospheric structure and variability and explore how these impact on the Southern Ocean. We discuss how the ‘Southern Annular Mode’ and the ‘Pacific-South American’ pattern influence the Southern Ocean, particularly in the eastern Pacific. We review the importance of atmospheric eddies in Southern Ocean climate, and the role they play in the transport of mechanical energy into the ocean. The fluxes of fresh water across the air-sea boundary influence strongly the processes of water mass formation. It is shown that climatological precipitation exceeds evaporation over most of the Southern Ocean. When averaged over the ocean from 50°S to the Antarctic coast the annual mean excess is 0.80 mm day−1. The magnitude of the flux displays only a small measure of seasonality, and its largest value of 0.92 mm day−1 occurs in summer.


Author(s):  
Benjamin Pohl ◽  
Thomas Saucède ◽  
Vincent Favier ◽  
Julien Pergaud ◽  
Deborah Verfaillie ◽  
...  

AbstractDaily weather regimes are defined around the Kerguelen Islands (Southern Ocean) based on daily 500 hPa geopotential height anomalies derived from the ERA5 ensemble reanalysis over the period 1979-2018. Ten regimes are retained as significant. Their occurrences are highly consistent across reanalysis ensemble members. Regimes show weak seasonality and non-significant long-term trends in their occurrences. Their sequences are usually short (1-3 days), with extreme persistence values above 10 days. Seasonal regime frequency is mostly driven by the phase of the Southern Annular Mode over Antarctica, mid-latitude dynamics over the Southern Ocean like the Pacific South American mode, and to a lesser extent, tropical variability, with significant but weaker relationships with El Niño Southern Oscillation. At the local scale over the Kerguelen Islands, regimes have a strong influence on measured atmospheric and oceanic variables, including minimum and maximum air temperature, mostly driven by horizontal advections, sea water temperature recorded 5 m below the surface, wind speed and sea level pressure. Relationships are weaker for precipitation amounts. Regimes also modify regional contrasts between observational sites in Kerguelen, highlighting strong exposure contrasts. The regimes allow improving our understanding of weather and climate variability and interactions in this region; they will be used in future work to assess past and projected long-term circulation changes in the southern mid-latitudes.


2009 ◽  
Vol 39 (9) ◽  
pp. 2011-2023 ◽  
Author(s):  
Emily Shuckburgh ◽  
Helen Jones ◽  
John Marshall ◽  
Chris Hill

Abstract A diagnostic framework is presented, based on the Nakamura effective diffusivity, to investigate the regional variation in eddy diffusivity. Comparison of three different diffusivity calculations enables the effects of locally enhanced tracer diffusion to be distinguished from the streamwise average. It also enables the distinction to be made between locally generated complexity in the tracer structure and that advected into a particular domain. The technique is applied to the Pacific sector of the Southern Ocean. The results highlight the important role that the mean flow plays in determining eddy diffusivity. The effective diffusivity is not simply related to the eddy kinetic energy: in regions of a strong mean flow the eddy diffusivity can be suppressed even in the presence of moderately strong eddy activity; conversely, in a region of weak mean flow the eddy diffusivity can be enhanced even in the presence of only weak eddy activity. This casts doubt on the ability of parameterizations based solely on the eddy kinetic energy to adequately characterize the eddy diffusivity in regions of strongly varying mean flow such as the Southern Ocean. The results are, however, consistent with the eddy transport and mixing variability predicted by potential-vorticity-based arguments.


Sign in / Sign up

Export Citation Format

Share Document