scholarly journals ENSO variability in the deuterium-excess record of a coastal Antarctic ice core from the McMurdo Dry Valleys, Victoria Land

2005 ◽  
Vol 41 ◽  
pp. 140-146 ◽  
Author(s):  
N.G. Patterson ◽  
N.A.N. Bertler ◽  
T.R. Naish ◽  
U. Morgenstern

AbstractThe El Niño–Southern Oscillation (ENSO) signal in coastal Antarctic precipitation is evaluated using deuterium-excess data measured from an ice core located at Victoria Lower Glacier (VLG) Dome, McMurdo Dry Valleys. Recent studies suggest that interannual variations in the intensity and position of the Amundsen Sea low, a low-pressure centre that controls moisture flux in the West Antarctic sector, is modulated by the ENSO. Deuterium-excess values from the VLG ice core, which serve as a proxy for changes in regional moisture flux, exhibit oscillations of equivalent duration to those observed in the Southern Oscillation Index (SOI). Results of cross-spectral analyses show that temporal fluctuations in deuterium excess and the SOI covary and are coherent at ~4.9, 3.6, 3.0, 2.6, 2.4 and 2.0 year frequencies between 1950 and 2000. We ascribe this covariance to shifts in the source and transport pathway of precipitation that is deposited in coastal Victoria Land as a consequence of ENSO’s influence. High values of deuterium excess are consistent with increased meridional flow carrying warm, moist air southward across the Ross Sea when the low-pressure centre is positioned to the north of the Ross Ice Shelf (La Niña mode). Low deuterium-excess values, which reflect a more westerly to southerly flow across the West Antarctic ice sheet and Ross Ice Shelf leading to cooler and drier en-route conditions, occur when the low-pressure centre is positioned above the Amundsen Sea (El Niño mode).

2016 ◽  
Vol 97 (1) ◽  
pp. 111-121 ◽  
Author(s):  
M. N. Raphael ◽  
G. J. Marshall ◽  
J. Turner ◽  
R. L. Fogt ◽  
D. Schneider ◽  
...  

Abstract The Amundsen Sea low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example, in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, the authors summarize the current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, as well as ice-core chemistry and climate model projections, to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the twenty-first century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases.


2013 ◽  
Vol 26 (20) ◽  
pp. 8055-8064 ◽  
Author(s):  
Maria Tsukernik ◽  
Amanda H. Lynch

Abstract The Antarctic ice sheet constitutes the largest reservoir of freshwater on earth, representing tens of meters of sea level rise if it were to melt completely. However, because of the remote location of the continent and the concomitant sparse data coverage, much remains unknown regarding the climate variability in Antarctica and the surrounding Southern Ocean. This study uses the high-resolution ECMWF Interim Re-Analysis (ERA-Interim) data during 1979–2010 to calculate the meridional moisture transport associated with the mean circulation, planetary waves, and synoptic-scale systems. The resulting moisture flux, which is dominated by the synoptic scales, is largely consistent with results from theoretical assumptions and previous studies. Here, high interannual and regional variability in the total meridional moisture flux is found, with no significant trend over the last 30 years. Further, the variability of the meridional moisture flux cannot be explained by the southern annular mode or El Niño–Southern Oscillation, even in the Pacific sector. In addition, the Amundsen Sea sector experiences the highest variability in meridional moisture transport and reveals a statistically significant decrease in the moisture flux at synoptic scales along the coastal zone. These results suggest that the Amundsen Sea provides a window on the complex nature of atmospheric moisture transport in the high southern latitudes.


2013 ◽  
Vol 9 (3) ◽  
pp. 2681-2715
Author(s):  
T. R. Jones ◽  
J. W. C. White ◽  
T. Popp

Abstract. Ice cores at Siple Dome, West Antarctic receive the majority of their precipitation from Pacific Ocean moisture sources. Pacific climate patterns, particularly in response to the El Niño-Southern Oscillation, affect local temperature, atmospheric circulation, snow accumulation, and water isotope signals at Siple Dome. We examined borehole temperatures, accumulation, and water isotopes from a number of shallow ice cores recovered from a 60 km north–south transect of the Dome. The data (with coverage from 1920–1995) reveal a microclimate heavily influenced by ENSO and the location of the Amundsen Sea Low Pressure Area. The Dome Summit and Pacific Flank respond to La Niña conditions by warming, increased isotope ratios, higher deuterium excess, and increased snowfall. The Inland Flank responds to El Niño conditions and cold interior air masses by cooling, decreased isotope ratios, lower deuterium excess, and decreased snowfall. ENSO-type spectral signatures (2–7 yr) are present in all water isotope records, but are not similar in their power structures. A longer 300 yr wavelet analysis record from the Dome Summit shows a late 19th-century climate shift similar to that seen in South Pacific coral isotope records. Our analyses suggest that while an ENSO signal is evident at Siple Dome, the microclimate effect makes climate reconstruction problematic, a conclusion which should be considered at other West Antarctic coastal dome locations.


2018 ◽  
Author(s):  
Frazer D. W. Christie ◽  
Robert G. Bingham ◽  
Noel Gourmelen ◽  
Eric J. Steig ◽  
Rosie R. Bisset ◽  
...  

Abstract. Over the past 20 years satellite remote sensing has captured significant downwasting of glaciers that drain the West Antarctic Ice Sheet into the ocean, particularly across the Amundsen Sea Sector. Along the neighbouring Marie Byrd Land Sector, situated west of Thwaites Glacier to Ross Ice Shelf, glaciological change has been only sparsely monitored. Here, we use optical satellite imagery to track grounding-line migration along the Marie Byrd Land Sector between 2003 and 2015, and compare observed changes with ICESat and CryoSat- 2-derived surface elevation and thickness change records. During the observational period, 33 % of the grounding line underwent retreat. The greatest retreat rates were observed along the 650-km-long Getz Ice Shelf, further west of which only minor retreat occurred. The relative glaciological stability west of Getz Ice Shelf can be attributed to a divergence of the Antarctic Circumpolar Current from the continental-shelf break at 135° W, coincident with a transition in the morphology of the continental shelf. Along Getz Ice Shelf, grounding-line retreat reduced by 68 % during the CryoSat-2 era relative to earlier observations. This slowdown is a likely response to reduced oceanic forcing, as inferred from climate reanalysis data. Collectively, our findings underscore the importance of spatial and inter-decadal variability in climate and ocean interactions in moderating glaciological change around Antarctica.


1979 ◽  
Vol 24 (90) ◽  
pp. 345-357 ◽  
Author(s):  
Michael M. Herron ◽  
Chester C. Langway

AbstractSeasonal variations in sodium concentrations have been measured on surface-pit snow samples and on firn and ice core samples from the Ross Ice Shelf, Antarctica. Site locations include J-9 (82° 22’ S., 168° 40’ W.), Roosevelt Island dome (79° 22’ S, 161° 40’ W), C-7-1 (78° 30’ S., 177° 00’ W.), and C-7-3 (78° 20’S., 179° 51’ E.). The predominant source for the Na is sea salt, indicated by greater concentration levels at seaward sites. Al concentrations of the order of only 10–9g/g show that the input of continental dust is comparable to that at inland Antarctic locations, and that dust contributes only a negligibly small fraction of the Na on the shelf. Maximum Na concentrations occur in the winter or early spring, as is the case for Greenland ice. The annual accumulation-rate at J-9, determined by counting Na concentration peaks with depth, is 90 kg m–2year–1, in agreement with rates determined radiometrically. Annual cycles in Na concentration are also detectable at depth in the J-9 ice core. It is suggested that Na concentration is a useful diagnostic criterion for distinguishing between East Antarctic ice (10–8g Na/g), West Antarctic ice (30 × 10–9g Na/g), and ice that fell as snow on the shelf itself (> 30 × 10–9g Na/g). The transition between snow that is chemically characteristic of the ice-shelf regime to snow of an inland regime is expected to occur near the 500 m elevation contour. This position is up to 200 km inland of the grounding line. A model is presented for the large-scale decrease in Na concentration with distance inland within the ice-shelf regime. Since deeper ice in Ross Ice Shelf cores originated generally further from the ocean, the up-stream origin of shelf ice may be estimated from the chemical profile. The Little America V ice-core chemistry profile shows no discontinuity as would be expected if a recent surge of West Antarctic ice had occurred.


2021 ◽  
pp. 1-55
Author(s):  
Paul B. Goddard ◽  
Clay R. Tabor ◽  
Tyler R. Jones

AbstractReconstructions of past West Antarctic Ice Sheet (WAIS) climate rely on the isotopologues of water recorded in ice cores which extend the local surface temperature record back tens of thousands of years. Here, we utilize continuous flow sampling and novel back-diffusion techniques with the WAIS Divide ice core (WDCobs) to construct a seasonal record of the δ18O value of the precipitation (δ18Op) at the time of deposition from 1980-2000. We then use a water isotope enabled global climate model, iCESM1, to establish seasonal drivers of WAIS climate and of δ18Op variability at the WAIS Divide location to compare with the WDCobs and MERRA2 reanalysis data. Our results show that the WAIS seasonal climate variability is driven by the position and strength of the Amundsen Sea Low (ASL) caused by variations in the Southern Annual Mode and the two Pacific-South American patterns (PSA1 and PSA2). The largest year-to-year seasonal δ18Op anomalies at the WAIS Divide location occur with respect to PSA2 during austral winter (JJA) as a result of an eastward displacement of the ASL that shifts the associated onshore winds towards the Weddell Sea, reducing temperatures and precipitation near the WAIS Divide location. Additionally, the iCESM1 experiment suggests that changes to the moisture path from the source to the WAIS Divide location is an important driver of seasonal WDCobs δ18Op variability. This work highlights the potential of using a single ice core to reconstruct past WAIS climate at seasonal timescales.


2017 ◽  
Vol 30 (20) ◽  
pp. 8405-8424 ◽  
Author(s):  
Kyle R. Clem ◽  
James A. Renwick ◽  
James McGregor

Abstract Using empirical orthogonal function (EOF) analysis and atmospheric reanalyses, the principal patterns of seasonal West Antarctic surface air temperature (SAT) and their connection to sea ice and the Amundsen Sea low (ASL) are examined. During austral summer, the leading EOF (EOF1) explains 35% of West Antarctic SAT variability and consists of a widespread SAT anomaly over the continent linked to persistent sea ice concentration anomalies over the Ross and Amundsen Seas from the previous spring. Outside of summer, EOF1 (explaining ~40%–50% of the variability) consists of an east–west dipole over the continent with SAT anomalies over the Antarctic Peninsula opposite those over western West Antarctica. The dipole is tied to variability in the southern annular mode (SAM) and in-phase El Niño–Southern Oscillation (ENSO)/SAM combinations that influence the depth of the ASL over the central Amundsen Sea (near 105°W). The second EOF (EOF2) during autumn, winter, and spring (explaining ~15%–20% of the variability) consists of a dipole shifted approximately 30° west of EOF1 with a widespread SAT anomaly over the continent. During winter and spring, EOF2 is closely tied to variability in ENSO and a tropically forced wave train that influences the ASL in the western Amundsen/eastern Ross Seas (near 135°W) with an opposite-sign circulation anomaly over the Weddell Sea; the ENSO-related circulation brings anomalous thermal advection deep onto the continent. The authors conclude that the ENSO-only circulation pattern is associated with SAT variability across interior West Antarctica, especially during winter and spring, whereas the SAM circulation pattern is associated with an SAT dipole over the continent.


1979 ◽  
Vol 24 (90) ◽  
pp. 345-357 ◽  
Author(s):  
Michael M. Herron ◽  
Chester C. Langway

AbstractSeasonal variations in sodium concentrations have been measured on surface-pit snow samples and on firn and ice core samples from the Ross Ice Shelf, Antarctica. Site locations include J-9 (82° 22’ S., 168° 40’ W.), Roosevelt Island dome (79° 22’ S, 161° 40’ W), C-7-1 (78° 30’ S., 177° 00’ W.), and C-7-3 (78° 20’S., 179° 51’ E.). The predominant source for the Na is sea salt, indicated by greater concentration levels at seaward sites. Al concentrations of the order of only 10–9 g/g show that the input of continental dust is comparable to that at inland Antarctic locations, and that dust contributes only a negligibly small fraction of the Na on the shelf. Maximum Na concentrations occur in the winter or early spring, as is the case for Greenland ice. The annual accumulation-rate at J-9, determined by counting Na concentration peaks with depth, is 90 kg m–2 year–1, in agreement with rates determined radiometrically. Annual cycles in Na concentration are also detectable at depth in the J-9 ice core. It is suggested that Na concentration is a useful diagnostic criterion for distinguishing between East Antarctic ice (10–8 g Na/g), West Antarctic ice (30 × 10–9 g Na/g), and ice that fell as snow on the shelf itself (> 30 × 10–9g Na/g). The transition between snow that is chemically characteristic of the ice-shelf regime to snow of an inland regime is expected to occur near the 500 m elevation contour. This position is up to 200 km inland of the grounding line. A model is presented for the large-scale decrease in Na concentration with distance inland within the ice-shelf regime. Since deeper ice in Ross Ice Shelf cores originated generally further from the ocean, the up-stream origin of shelf ice may be estimated from the chemical profile. The Little America V ice-core chemistry profile shows no discontinuity as would be expected if a recent surge of West Antarctic ice had occurred.


1984 ◽  
Vol 5 ◽  
pp. 95-99 ◽  
Author(s):  
B. J. McInnes ◽  
W. F. Budd

The dynamic state of the West Antarctic ice sheet has been termed the grand problem of glaciology. An attempt is presented to assess it by simulating the observed ice thickness and ice velocities along a cross-section from ice stream B (Ross Sea) to Pine Island Glacier (Pine Island Bay) with a numerical model developed from the one described by Budd and McInnes (1978). A kinematic analysis with topographical and regime data from various sources shows the mass fluxes observed near the grounding line of the Ross Ice Shelf to be of the order expected for steady-state balance. Deformation of the ice accounts for only a small fraction of the observed flow there. Simulations (to be described in detail elsewhere) with the Budd/McInnes surging mechanism can approximate the existing ice thickness as a post-surge feature but fail to reproduce the high balance velocities. Both these velocities and the existing ice-thickness profile are simulated successfully as a state of steady sliding, with parameterizations involving the ice thickness above that corresponding to buoyancy and realistically assumed longitudinal strain-rates. A range of results is presented to illustrate the sensitivity of the simulation to changes in various parameters.


Sign in / Sign up

Export Citation Format

Share Document