Projected Changes in East African Rainy Seasons
Abstract A regional climate model with 90-km horizontal resolution on a large domain is used to predict and analyze precipitation changes over East Africa caused by greenhouse gas increases. A pair of six-member ensembles is used: one representing the late twentieth century and another the mid-twenty-first century under a midline emissions scenario. The twentieth-century simulation uses boundary conditions from reanalysis climatology, and these are modified for the mid-twenty-first-century simulation using output from coupled GCMs. The twentieth-century simulation reproduces the observed climate well. In eastern Ethiopia and Somalia, the boreal spring rains that begin in May are cut short in the mid-twenty-first-century simulation. The cause is an anomalous dry, anticyclonic flow that develops over the Arabian Peninsula and the northern Arabian Sea as mass shifts eastward near 20°N in response to strong warming over the Sahara. In Tanzania and southern Kenya, the boreal spring's long rains are reduced throughout the season in the future simulation. This is a secondary response to precipitation enhancement in the Congo basin. The boreal fall “short rains” season is lengthened in the twenty-first-century simulation in the southern Kenya and Tanzania region in association with a northeastward shift of the South Indian convergence zone.