Simulations of the West African Monsoon with a Superparameterized Climate Model. Part I: The Seasonal Cycle

2014 ◽  
Vol 27 (22) ◽  
pp. 8303-8322 ◽  
Author(s):  
Rachel R. McCrary ◽  
David A. Randall ◽  
Cristiana Stan

Abstract The West African monsoon seasonal cycle is simulated with two coupled general circulation models: the Community Climate System Model (CCSM), which uses traditional convective parameterizations, and the “superparameterized” CCSM (SP-CCSM), in which the atmospheric parameterizations have been replaced with an embedded cloud-resolving model. Compared to CCSM, SP-CCSM better represents the magnitude and spatial patterns of summer monsoon precipitation over West Africa. Most importantly, the region of maximum precipitation is shifted from the Gulf of Guinea in CCSM (not realistic) to over the continent in SP-CCSM. SP-CCSM also develops its own biases—namely, excessive rainfall along the Guinean coast in summer. Biases in rainfall from both models are linked to a misrepresentation of the equatorial Atlantic cold tongue. Warm sea surface temperature (SST) biases are linked to westerly trade wind biases and convection within the intertropical convergence zone. Improved SST biases in SP-CCSM are linked to increased tropospheric warming associated with convection. A weaker-than-observed Saharan heat low is found in both models, which explains why the main band of precipitation does not penetrate as far northward as observed. The latitude–height position of the African easterly jet (AEJ) is comparable to observations in both models, but the meridional temperature and moisture gradients and the strength of the jet are too weak in SP-CCSM and too strong in CCSM. Differences in the AEJ are hypothesized to be influenced by the contrasting representation of African easterly waves in both models; no wave activity is found in CCSM, and strong waves are found in SP-CCSM.

2015 ◽  
Vol 11 (4) ◽  
pp. 3071-3107 ◽  
Author(s):  
R. Rachmayani ◽  
M. Prange ◽  
M. Schulz

Abstract. Using the Community Climate System Model version 3 (CCSM3) including a dynamic global vegetation model a set of 13 interglacial time slice experiments was carried out to study global climate variability between and within the Quaternary interglaciations of Marine Isotope Stages (MIS) 1, 5, 11, 13, and 15. The different effects of obliquity, precession and greenhouse gas forcing on global surface temperature and precipitation fields are illuminated. Several similarities with previous idealized orbital-forcing experiments can be identified. In particular, a significant role of meridional insolation-gradient forcing by obliquity variations in forcing the West African monsoon is found. The sensitivity of the West African monsoon to this obliquity forcing, however, depends on the climatic precession. According to the CCSM3 results, the Indian monsoon is less sensitive to direct obliquity-induced insolation forcing, consistent with the interpretation of proxy records from the Arabian Sea. Moreover, the model results suggest that the two monsoon systems do not always vary in concert, challenging the concept of a global monsoon system at orbital timescales. High obliquity can also explain relatively warm Northern Hemisphere high-latitude summer temperatures despite maximum precession around 495 kyr BP (MIS 13) probably preventing a glacial inception at that time.


2016 ◽  
Vol 144 (4) ◽  
pp. 1571-1589 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Caroline L. Bain ◽  
Peter Knippertz ◽  
John H. Marsham ◽  
Douglas J. Parker

Abstract Accurate prediction of the commencement of local rainfall over West Africa can provide vital information for local stakeholders and regional planners. However, in comparison with analysis of the regional onset of the West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored. One of the main reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall. A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is presented. This new method can be thought of as analogous to a regional signal against local noise analysis of onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency (denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found results. Identifying local onset regions and understanding their variability can provide important insight into the spatial limit of monsoon predictability. While local onset regions can be found over West Africa, their size is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions is presented that shows the link between the annual intertropical front progression and local agronomic onset.


2021 ◽  
Author(s):  
Christopher Johannes Diekmann ◽  
Matthias Schneider ◽  
Peter Knippertz ◽  
Andries Jan de Vries ◽  
Stephan Pfahl ◽  
...  

2008 ◽  
Vol 96 (1-2) ◽  
pp. 179-189 ◽  
Author(s):  
G. A. Dalu ◽  
M. Gaetani ◽  
M. Baldi

2010 ◽  
Vol 23 (21) ◽  
pp. 5557-5571 ◽  
Author(s):  
Sally L. Lavender ◽  
Christopher M. Taylor ◽  
Adrian J. Matthews

Abstract Recent observational studies have suggested a role for soil moisture and land–atmosphere coupling in the 15-day westward-propagating mode of intraseasonal variability in the West African monsoon. This hypothesis is investigated with a set of three atmospheric general circulation model experiments. 1) When soil moisture is fully coupled with the atmospheric model, the 15-day mode of land–atmosphere variability is clearly identified. Precipitation anomalies lead soil moisture anomalies by 1–2 days, similar to the results from satellite observations. 2) To assess whether soil moisture is merely a passive response to the precipitation, or an active participant in this mode, the atmospheric model is forced with a 15-day westward-propagating cycle of regional soil moisture anomalies based on the fully coupled mode. Through a reduced surface sensible heat flux, the imposed wet soil anomalies induce negative low-level temperature anomalies and increased pressure (a cool high). An anticyclonic circulation then develops around the region of wet soil, enhancing northward moisture advection and precipitation to the west. Hence, in a coupled framework, this soil moisture–forced precipitation response would provide a self-consistent positive feedback on the westward-propagating soil moisture anomaly and implies an active role for soil moisture. 3) In a final sensitivity experiment, soil moisture is again externally prescribed but with all intraseasonal fluctuations suppressed. In the absence of soil moisture variability there are still pronounced surface sensible heat flux variations, likely due to cloud changes, and the 15-day westward-propagating precipitation signal is still present. However, it is not as coherent as in the previous experiments when interaction with soil moisture was permitted. Further examination of the soil moisture forcing experiment in GCM experiment 2 shows that this precipitation mode becomes phase locked to the imposed soil moisture anomalies. Hence, the 15-day westward-propagating mode in the West African monsoon can exist independently of soil moisture; however, soil moisture and land–atmosphere coupling act to feed back on the atmosphere and further enhance and organize it.


2017 ◽  
Vol 145 (9) ◽  
pp. 3881-3900 ◽  
Author(s):  
Sara Q. Zhang ◽  
T. Matsui ◽  
S. Cheung ◽  
M. Zupanski ◽  
C. Peters-Lidard

Abstract This work assimilates multisensor precipitation-sensitive microwave radiance observations into a storm-scale NASA Unified Weather Research and Forecasting (NU-WRF) Model simulation of the West African monsoon. The analysis consists of a full description of the atmospheric states and a realistic cloud and precipitation distribution that is consistent with the observed dynamic and physical features. The analysis shows an improved representation of monsoon precipitation and its interaction with dynamics over West Africa. Most significantly, assimilation of precipitation-affected microwave radiance has a positive impact on the distribution of precipitation intensity and also modulates the propagation of cloud precipitation systems associated with the African easterly jet. Using an ensemble-based assimilation technique that allows state-dependent forecast error covariance among dynamical and microphysical variables, this work shows that the assimilation of precipitation-sensitive microwave radiances over the West African monsoon rainband enables initialization of storms. These storms show the characteristics of continental tropical convection that enhance the connection between tropical waves and organized convection systems.


Sign in / Sign up

Export Citation Format

Share Document