Parameter Tuning and Calibration of RegCM3 with MIT–Emanuel Cumulus Parameterization Scheme over CORDEX East Asia Domain

2014 ◽  
Vol 27 (20) ◽  
pp. 7687-7701 ◽  
Author(s):  
Liwei Zou ◽  
Yun Qian ◽  
Tianjun Zhou ◽  
Ben Yang

Abstract In this study, the authors calibrated the performance of the Regional Climate Model, version 3 (RegCM3), with the Massachusetts Institute of Technology (MIT)–Emanuel cumulus parameterization scheme over the Coordinated Regional Climate Downscaling Experiment (CORDEX) East Asia domain by tuning seven selected parameters based on the multiple very fast simulated annealing (MVFSA) approach. The seven parameters were selected based on previous studies using RegCM3 with the MIT–Emanuel convection scheme. The results show the simulated spatial pattern of rainfall, and the probability density function distribution of daily rainfall rates is significantly improved in the optimal simulation. Sensitivity analysis suggests that the parameter relative humidity criteria (RHC) has the largest effect on the model results. Followed by an increase of RHC, an increase of total rainfall is found over the northern equatorial western Pacific, mainly contributed by the increase of explicit rainfall. The increases of the convergence of low-level water vapor transport and the associated increases in cloud water favor the increase of explicit rainfall. The identified optimal parameters constrained by total rainfall have positive effects on the low-level circulation and surface air temperature. Furthermore, the optimized parameters based on the chosen extreme case are transferable to a normal case and the model’s new version with a mixed convection scheme.

Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 28 ◽  
Author(s):  
Ji-Young Han ◽  
So-Young Kim ◽  
In-Jin Choi ◽  
Emilia Jin

Effects of the convective triggering process in a cumulus parameterization scheme on the diurnal variation of precipitation over East Asia are examined using a regional climate model. Based on a cloud-resolving simulation showing the irrelevance of convective inhibition once convection is initiated and the sensitivity experiments to trigger conditions, the triggering process in the simplified Arakawa-Schubert (SAS) convection scheme is modified to use different convective initiation and termination conditions. The diurnal variation of precipitation frequency with the modified triggering process becomes in phase with the observed one, leading to a delayed afternoon peak in precipitation rate that is in better agreement with the observation. However, the bias in the phase of precipitation intensity is not resolved and the bias of excessive precipitation increases, indicating that adequate representation of not only the triggering process but also other moist convective processes that determine the strength of convection is required for further improvement in the simulation of the diurnal variation of precipitation.


2016 ◽  
Vol 48 (7-8) ◽  
pp. 2339-2357 ◽  
Author(s):  
Jianping Tang ◽  
Shuyu Wang ◽  
Xiaorui Niu ◽  
Pinhong Hui ◽  
Peishu Zong ◽  
...  

2019 ◽  
Vol 32 (16) ◽  
pp. 5053-5067 ◽  
Author(s):  
Hyeonjae Lee ◽  
Chun-Sil Jin ◽  
Dong-Hyun Cha ◽  
Minkyu Lee ◽  
Dong-Kyou Lee ◽  
...  

AbstractFuture changes in tropical cyclone (TC) activity over the western North Pacific (WNP) are analyzed using four regional climate models (RCMs) within the Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia. All RCMs are forced by the HadGEM2-AO under the historical and representative concentration pathway (RCP) 8.5 scenarios, and are performed at about 50-km resolution over the CORDEX-East Asia domain. In the historical simulations (1980–2005), multi-RCM ensembles yield realistic climatology for TC tracks and genesis frequency during the TC season (June–November), although they show somewhat systematic biases in simulating TC activity. The future (2024–49) projections indicate an insignificant increase in the total number of TC genesis (+5%), but a significant increase in track density over East Asia coastal regions (+17%). The enhanced TC activity over the East Asia coastal regions is mainly related to vertical wind shear weakened by reduced meridional temperature gradient and increased sea surface temperature (SST) at midlatitudes. The future accumulated cyclone energy (ACE) of total TCs increases significantly (+19%) because individual TCs have a longer lifetime (+6.6%) and stronger maximum wind speed (+4.1%) compared to those in the historical run. In particular, the ACE of TCs passing through 25°N increases by 45.9% in the future climate, indicating that the destructiveness of TCs can be significantly enhanced in the midlatitudes despite the total number of TCs not changing greatly.


Sign in / Sign up

Export Citation Format

Share Document