scholarly journals The Representation of Atmospheric Blocking and the Associated Low-Frequency Variability in Two Seasonal Prediction Systems

2014 ◽  
Vol 27 (24) ◽  
pp. 9082-9100 ◽  
Author(s):  
Panos J. Athanasiadis ◽  
Alessio Bellucci ◽  
Leon Hermanson ◽  
Adam A. Scaife ◽  
Craig MacLachlan ◽  
...  

Abstract Primarily as a response to boundary forcings, certain components of the atmospheric intraseasonal variability are potentially predictable. Particularly referring to the extratropics, the current generation of seasonal forecasting systems is making advancements in predicting these components by realistically initializing many components of the climate system, using higher resolution and utilizing large ensemble sizes. The operational seasonal prediction system of the Met Office (UKMO) and the corresponding system of the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The UKMO system achieves unprecedented high scores in predicting the winter mean phase of the North Atlantic Oscillation (NAO; correlation 0.62) and the Pacific–North American pattern (PNA; correlation 0.82). The CMCC system, despite its smaller ensemble size and coarser resolution, also exhibits significant skill (0.42 for NAO, 0.51 for PNA). Low-frequency variability is underrepresented in both models, particularly in the eastern North Atlantic. Consequently, their intrinsic variability patterns (sectoral EOFs) are somewhat different from the observed patterns. Regarding the representation of wintertime Northern Hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. The blocking signature on the circulation and the dependence of blocking frequency on the NAO are also quite realistic for both systems. Finally, the Met Office system exhibits significant skill in predicting the winter mean frequency of blocking that relates to the NAO.

2009 ◽  
Vol 66 (2) ◽  
pp. 332-352 ◽  
Author(s):  
Edwin P. Gerber ◽  
Geoffrey K. Vallis

Abstract The zonal structure and dynamics of the dipolar patterns of intraseasonal variability in the extratropical atmosphere—namely, the North Atlantic Oscillation (NAO) and the so-called annular modes of variability—are investigated in an idealized general circulation model. Particular attention is focused on the relationships linking the zonal structure of the stationary waves, synoptic variability (i.e., the storm tracks), and the zonal structure of the patterns of intraseasonal variability. Large-scale topography and diabatic anomalies are introduced to modify and concentrate the synoptic variability, establishing a recipe for a localized storm track. Comparison of the large-scale forcing, synoptic variability, and patterns of intraseasonal variability suggests a nonlinear relationship between the large-scale forcing and the variability. It is found that localized NAO-like patterns arise from the confluence of topographic and diabatic forcing and that the patterns are more localized than one would expect based on superposition of the responses to topography and thermal forcing alone. The connection between the eddy life cycle of growth and decay and the localization of the intraseasonal variability is investigated. Both the termination of the storm track and the localization of the intraseasonal variability in the GCM depend on a difluent region of weak upper-level flow, where eddies break and dissipate rather than propagate energy forward through downstream development. The authors' interpretation suggests that the North Atlantic storm track and the NAO are two manifestations of the same phenomenon. Conclusions from the GCM study are critiqued by comparison with observations.


2013 ◽  
Vol 70 (9) ◽  
pp. 2854-2874 ◽  
Author(s):  
Marie Drouard ◽  
Gwendal Rivière ◽  
Philippe Arbogast

Abstract Ingredients in the North Pacific flow influencing Rossby wave breakings in the North Atlantic and the intraseasonal variations of the North Atlantic Oscillation (NAO) are investigated using both reanalysis data and a three-level quasigeostrophic model on the sphere. First, a long-term run is shown to reproduce the observed relationship between the nature of the synoptic wave breaking and the phase of the NAO. Furthermore, a large-scale, low-frequency ridge anomaly is identified in the northeastern Pacific in the days prior to the maximum of the positive NAO phase both in the reanalysis and in the model. A large-scale northeastern Pacific trough anomaly is observed during the negative NAO phase but does not systematically precede it. Then, short-term linear and nonlinear simulations are performed to understand how the large-scale ridge anomaly can act as a precursor of the positive NAO phase. The numerical setup allows for analysis of the propagation of synoptic waves in the eastern Pacific in the presence of a large-scale ridge or trough anomaly and their downstream impact onto the Atlantic jet when they break. The ridge acts in two ways. First, it tends to prevent the downstream propagation of small waves compared to long waves. Second, it deflects the propagation of the wave trains in such a way that they mainly propagate equatorward in the Atlantic. The two modes of action favor the anticyclonic wave breaking and, therefore, the positive NAO phase. With the trough, the wave train propagation is more zonal, disturbances are more meridionally elongated, and cyclonic wave breaking is more frequent in the Atlantic than in the ridge case.


2020 ◽  
Author(s):  
Lucia Pineau-Guillou ◽  
Pascal Lazure ◽  
Guy Wöppelmann

Abstract. We investigated the long-term changes of the principal tidal component M2 over the North Atlantic coasts, from 1846 to 2018. We analysed 9 tide gauges with time series starting no later than 1920. The longest is Brest with 165 years of observations. We carefully processed the data, particularly to remove the 18.6-year nodal modulation. We found that M2 variations are consistent at all the stations in the North East Atlantic (Newlyn, Brest, Cuxhaven), whereas some discrepancies appear in the North West Atlantic. The changes started long before the XXth century, and are not linear. The trends vary from a station to another; they are overall positive, up to 0.7 mm/yr. Since 1990, the trends switch from positive to negative values. Concerning the possible causes of the observed changes, the similarity between the North Atlantic Oscillation and M2 variations in the North East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide. We discuss a possible underlying mechanism. A different spatial distribution of water heights from one year to another, depending on the low-frequency sea-level pressure patterns, could impact the propagation of the tide in the North Atlantic basin. However, the hypothesis is at present unproven.


2005 ◽  
Vol 133 (10) ◽  
pp. 2894-2904 ◽  
Author(s):  
Ulrike Löptien ◽  
Eberhard Ruprecht

Abstract The North Atlantic Oscillation (NAO) represents the dominant mode of atmospheric variability in the North Atlantic region. In the present study, the role of the synoptic systems (cyclones and anticyclones) in generating the NAO pattern is investigated. To study the intermonthly variations of the NAO, NCEP–NCAR reanalysis data are used, and for the interdecadal variations the results of a 300-yr control integration under present-day conditions of the coupled model ECHAM4/OPYC3 are analyzed. A filtering method is developed for the sea level pressure anomalies. Application of this method to each grid point yields the low-frequency variability in the sea level pressure field that is due to the synoptic systems. The low-frequency variability of the filtered and the original data are in high agreement. This indicates that the low-frequency pressure variability, and with it the variability of the NAO, is essentially caused by the distribution of the synoptic systems. The idea that the distribution of the synoptic systems is the cause of the variation of the NAO is confirmed by high correlation between the latitudinal position of the polar front over the North Atlantic and the NAO index. Since most of the low-frequency variability in sea level pressure can be explained through the distribution of the synoptic systems, the NAO seems to be a reflection of the distribution of the synoptic systems, rather than the source for variations in the cyclone tracks.


2006 ◽  
Vol 63 (7) ◽  
pp. 1859-1877 ◽  
Author(s):  
D. Kondrashov ◽  
S. Kravtsov ◽  
M. Ghil

Abstract This paper constructs and analyzes a reduced nonlinear stochastic model of extratropical low-frequency variability. To do so, it applies multilevel quadratic regression to the output of a long simulation of a global baroclinic, quasigeostrophic, three-level (QG3) model with topography; the model's phase space has a dimension of O(104). The reduced model has 45 variables and captures well the non-Gaussian features of the QG3 model's probability density function (PDF). In particular, the reduced model's PDF shares with the QG3 model its four anomalously persistent flow patterns, which correspond to opposite phases of the Arctic Oscillation and the North Atlantic Oscillation, as well as the Markov chain of transitions between these regimes. In addition, multichannel singular spectrum analysis identifies intraseasonal oscillations with a period of 35–37 days and of 20 days in the data generated by both the QG3 model and its low-dimensional analog. An analytical and numerical study of the reduced model starts with the fixed points and oscillatory eigenmodes of the model's deterministic part and uses systematically an increasing noise parameter to connect these with the behavior of the full, stochastically forced model version. The results of this study point to the origin of the QG3 model's multiple regimes and intraseasonal oscillations and identify the connections between the two types of behavior.


2014 ◽  
Vol 10 (1) ◽  
pp. 325-343 ◽  
Author(s):  
J. T. Andrews ◽  
A. E. Jennings

Abstract. In the area of Denmark Strait (~66° N), the two modes of the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) are expressed in changes of the northward flux of Atlantic water and the southward advection of polar water in the East Iceland current. Proxies from marine cores along an environmental gradient from extensive to little or no drift ice, capture low frequency variations over the last 2000 cal yr BP. Key proxies are the weight% of calcite, a measure of surface water stratification and nutrient supply, the weight% of quartz, a measure of drift ice transport, and grain size. Records from Nansen and Kangerlussuaq fjords show variable ice-rafted debris (IRD) records but have distinct mineralogy associated with differences in the fjord catchment bedrock. A comparison between cores on either side of the Denmark Strait (MD99-2322 and MD99-2269) show a remarkable millennial-scale similarity in the trends of the weight% of calcite with a trough reached during the Little Ice Age. However, the quartz records from these two sites are quite different. The calcite records from the Denmark Strait parallel the 2000 yr Arctic summer-temperature reconstructions; analysis of the detrended calcite and quartz data reveal significant multi-decadal–century periodicities superimposed on a major environmental shift occurring ca. 1450 AD.


2007 ◽  
Vol 64 (1) ◽  
pp. 3-28 ◽  
Author(s):  
Dehai Luo ◽  
Anthony R. Lupo ◽  
Han Wan

Abstract A simple theoretical model is proposed to clarify how synoptic-scale waves drive the life cycle of the North Atlantic Oscillation (NAO) with a period of nearly two weeks. This model is able to elucidate what determines the phase of the NAO and an analytical solution is presented to indicate a high similarity between the dynamical processes of the NAO and zonal index, which is not derived analytically in previous theoretical studies. It is suggested theoretically that the NAO is indeed a nonlinear initial-value problem, which is forced by both preexisting planetary-scale and synoptic-scale waves. The eddy forcing arising from the preexisting synoptic-scale waves is shown to be crucial for the growth and decay of the NAO, but the preexisting low-over-high (high-over-low) dipole planetary-scale wave must be required to match the preexisting positive-over-negative (negative-over-positive) dipole eddy forcing so as to excite a positive (negative) phase NAO event. The positive and negative feedbacks of the preexisting dipole eddy forcing depending upon the background westerly wind seem to dominate the life cycle of the NAO and its life period. An important finding in the theoretical model is that negative-phase NAO events could be excited repeatedly after the first event has decayed, but for the positive phase downstream isolated dipole blocks could be produced after the first event has decayed. This is supported by observed cases of the NAO events presented in this paper. In addition, a statistical study of the relationship between the phase of the NAO and blocking activity over Europe in terms of the seasonal mean NAO index shows that blocking events over Europe are more frequent and long-lived for strong positive-phase NAO years, indicating that the positive-phase NAO favors the occurrence of European blocking events.


2021 ◽  
Author(s):  
Elena Vyshkvarkova ◽  
Olga Sukhonos

Abstract The spatial distribution of compound extremes of air temperature and precipitation was studied over the territory of Eastern Europe for the period 1950–2018 during winter and spring. Using daily data on air temperature and precipitation, we calculated the frequency and trends of the four indices – cold/dry, cold/wet, warm/dry and warm/wet. Also, we studying the connection between these indices and large-scale processes in the ocean-atmosphere system such as North Atlantic Oscillation, East Atlantic Oscillation and Scandinavian Oscillation. The results have shown that positive trends in the region are typical of the combinations with the temperatures above the 75th percentile, i.e., the warm extremes in winter and spring. Negative trends were obtained for the cold extremes. Statistically significant increase in the number of days with warm extremes was observed in the northern parts of the region in winter and spring. The analysis of the impacts of the large-scale processes in oceans-atmosphere system showed that the North Atlantic Oscillation index has a strong positive and statistically significant correlation with the warm indices of compound extremes in the northern part of Eastern Europe in winter, while the Scandinavian Oscillation shows the opposite picture.


2018 ◽  
Vol 31 (6) ◽  
pp. 2511-2532 ◽  
Author(s):  
Clio Michel ◽  
Annick Terpstra ◽  
Thomas Spengler

Polar mesoscale cyclones (PMCs) are automatically detected and tracked over the Nordic seas using the Melbourne University algorithm applied to ERA-Interim. The novelty of this study lies in the length of the dataset (1979–2014), using PMC tracks to infer relationships to large-scale flow patterns, and elucidating the sensitivity to different selection criteria when defining PMCs and polar lows and their genesis environments. The angle between the ambient mean and thermal wind is used to distinguish two different PMC genesis environments. The forward shear environment (thermal and mean wind have the same direction) features typical baroclinic conditions with a temperature gradient at the surface and a strong jet stream at the tropopause. The reverse shear environment (thermal and mean wind have opposite directions) features an occluded cyclone with a barotropic structure throughout the entire troposphere and a low-level jet. In contrast to previous studies, PMC occurrence features neither a significant trend nor a significant link with the North Atlantic Oscillation and the Scandinavian blocking (SB), though the SB negative pattern seems to promote reverse shear PMC genesis. The sea ice extent in the Nordic seas is not associated with overall changes in PMC occurrence but influences the genesis location. Selected cold air outbreak indices and the temperature difference between the sea surface and 500 hPa (SST − T500) show no robust link with PMC occurrence, but the characteristics of forward shear PMCs and their synoptic environments are sensitive to the choice of the SST − T500 threshold.


Sign in / Sign up

Export Citation Format

Share Document