The Impact of Poleward Moisture and Sensible Heat Flux on Arctic Winter Sea Ice Variability*

2015 ◽  
Vol 28 (13) ◽  
pp. 5030-5040 ◽  
Author(s):  
Hyo-Seok Park ◽  
Sukyoung Lee ◽  
Seok-Woo Son ◽  
Steven B. Feldstein ◽  
Yu Kosaka

Abstract The surface warming in recent decades has been most rapid in the Arctic, especially during the winter. Here, by utilizing global reanalysis and satellite datasets, it is shown that the northward flux of moisture into the Arctic during the winter strengthens the downward infrared radiation (IR) by 30–40 W m−2 over 1–2 weeks. This is followed by a decline of up to 10% in sea ice concentration over the Greenland, Barents, and Kara Seas. A climate model simulation indicates that the wind-induced sea ice drift leads the decline of sea ice thickness during the early stage of the strong downward IR events, but that within one week the cumulative downward IR effect appears to be dominant. Further analysis indicates that strong downward IR events are preceded several days earlier by enhanced convection over the tropical Indian and western Pacific Oceans. This finding suggests that sea ice predictions can benefit from an improved understanding of tropical convection and ensuing planetary wave dynamics.

2020 ◽  
Vol 61 (82) ◽  
pp. 97-105
Author(s):  
Jun Ono ◽  
Yoshiki Komuro ◽  
Hiroaki Tatebe

AbstractThe impact of April sea-ice thickness (SIT) initialization on the predictability of September sea-ice extent (SIE) is investigated based on a series of perfect model ensemble experiments using the MIROC5.2 climate model. Ensembles with April SIT initialization can accurately predict the September SIE for greater lead times than in cases without the initialization – up to 2 years ahead. The persistence of SIT correctly initialized in April contributes to the skilful prediction of SIE in the first September. On the other hand, errors in the initialization of SIT in April cause errors in the predicted sea-ice concentration and thickness in the Pacific sector from July to September and consequently influence the predictive skill with respect to SIE in September. The present study suggests that initialization of the April SIT in the Pacific sector significantly improves the accuracy of the September SIE forecasts by decreasing the errors in sea-ice fields from July to September.


2020 ◽  
Author(s):  
Xi Liang ◽  
Fu Zhao ◽  
Chunhua Li ◽  
Lin Zhang

<p>NMEFC provides sea ice services for the CHINARE since 2010, the products in the early stage (before 2017) include satellite-retrieved and numerical forecasts of sea ice concentration. Based on MITgcm and ensemble Kalman Filter data assimilation scheme,  the Arctic Ice-Ocean Prediction System (ArcIOPS v1.0), was established in 2017. ArcIOPS v1.0 assimilates available satellite-retrieved sea ice concentration and thickness data. Sea ice thickness forecasting products from ArcIOPS v1.0 are provided to the CHINARE8, and are believed to have played an important role in the successful passage of R/V XUELONG through the Central Arctic for the first time during the summer of 2017. In 2019, ArcIOPS v1.0 was upgraded to the latest version (ArcIOPS v1.1), which assimilates satellite-retrieved sea ice concentration, sea ice thickness, as well as sea surface temperature (SST) data in ice free areas. Comparison between outputs of the latest version of ArcIOPS and that of its previous version shows that the latest version has a substantial improvement on sea ice concentration forecasts. In the future, with more and more kinds of observations to be assimilated, the high-resolution version of ArcIOPS will be put into operational running and benefit Chinese scientific and commercial activities in the Arctic Ocean.</p>


2021 ◽  
Author(s):  
Isolde Glissenaar ◽  
Jack Landy ◽  
Alek Petty ◽  
Nathan Kurtz ◽  
Julienne Stroeve

<p>The ice cover of the Arctic Ocean is increasingly becoming dominated by seasonal sea ice. It is important to focus on the processing of altimetry ice thickness data in thinner seasonal ice regions to understand seasonal sea ice behaviour better. This study focusses on Baffin Bay as a region of interest to study seasonal ice behaviour.</p><p>We aim to reconcile the spring sea ice thickness derived from multiple satellite altimetry sensors and sea ice charts in Baffin Bay and produce a robust long-term record (2003-2020) for analysing trends in sea ice thickness. We investigate the impact of choosing different snow depth products (the Warren climatology, a passive microwave snow depth product and modelled snow depth from reanalysis data) and snow redistribution methods (a sigmoidal function and an empirical piecewise function) to retrieve sea ice thickness from satellite altimetry sea ice freeboard data.</p><p>The choice of snow depth product and redistribution method results in an uncertainty envelope around the March mean sea ice thickness in Baffin Bay of 10%. Moreover, the sea ice thickness trend ranges from -15 cm/dec to 20 cm/dec depending on the applied snow depth product and redistribution method. Previous studies have shown a possible long-term asymmetrical trend in sea ice thinning in Baffin Bay. The present study shows that whether a significant long-term asymmetrical trend was found depends on the choice of snow depth product and redistribution method. The satellite altimetry sea ice thickness results with different snow depth products and snow redistribution methods show that different processing techniques can lead to different results and can influence conclusions on total and spatial sea ice thickness trends. Further processing work on the historic radar altimetry record is needed to create reliable sea ice thickness products in the marginal ice zone.</p>


2019 ◽  
Vol 32 (5) ◽  
pp. 1361-1380 ◽  
Author(s):  
J. Ono ◽  
H. Tatebe ◽  
Y. Komuro

Abstract The mechanisms for and predictability of a drastic reduction in the Arctic sea ice extent (SIE) are investigated using the Model for Interdisciplinary Research on Climate (MIROC) version 5.2. Here, a control (CTRL) with forcing fixed at year 2000 levels and perfect-model ensemble prediction (PRED) experiments are conducted. In CTRL, three (model years 51, 56, and 57) drastic SIE reductions occur during a 200-yr-long integration. In year 56, the sea ice moves offshore in association with a positive phase of the summer Arctic dipole anomaly (ADA) index and melts due to heat input through the increased open water area, and the SIE drastically decreases. This provides the preconditioning for the lowest SIE in year 57 when the Arctic Ocean interior is in a warm state and the spring sea ice volume has a large negative anomaly due to drastic ice reduction in the previous year. Although the ADA is one of the key mechanisms behind sea ice reduction, it does not always cause a drastic reduction. Our analysis suggests that wind direction favoring offshore ice motion is a more important factor for drastic ice reduction events. In years experiencing drastic ice reduction events, the September SIE can be skillfully predicted in PRED started from July, but not from April. This is because the forecast errors for the July sea level pressure and those for the sea ice concentration and sea ice thickness along the ice edge are large in PRED started from April.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2018 ◽  
Author(s):  
David Schröder ◽  
Danny L. Feltham ◽  
Michel Tsamados ◽  
Andy Ridout ◽  
Rachel Tilling

Abstract. Estimates of Arctic sea ice thickness are available from the CryoSat-2 (CS2) radar altimetry mission during ice growth seasons since 2010. We derive the sub-grid scale ice thickness distribution (ITD) with respect to 5 ice thickness categories used in a sea ice component (CICE) of climate simulations. This allows us to initialize the ITD in stand-alone simulations with CICE and to verify the simulated cycle of ice thickness. We find that a default CICE simulation strongly underestimates ice thickness, despite reproducing the inter-annual variability of summer sea ice extent. We can identify the underestimation of winter ice growth as being responsible and show that increasing the ice conductive flux for lower temperatures (bubbly brine scheme) and accounting for the loss of drifting snow results in the simulated sea ice growth being more realistic. Sensitivity studies provide insight into the impact of initial and atmospheric conditions and, thus, on the role of positive and negative feedback processes. During summer, atmospheric conditions are responsible for 50 % of September sea ice thickness variability through the positive sea ice and melt pond albedo feedback. However, atmospheric winter conditions have little impact on winter ice growth due to the dominating negative conductive feedback process: the thinner the ice and snow in autumn, the stronger the ice growth in winter. We conclude that the fate of Arctic summer sea ice is largely controlled by atmospheric conditions during the melting season rather than by winter temperature. Our optimal model configuration does not only improve the simulated sea ice thickness, but also summer sea ice concentration, melt pond fraction, and length of the melt season. It is the first time CS2 sea ice thickness data have been applied successfully to improve sea ice model physics.


2013 ◽  
Vol 26 (1) ◽  
pp. 231-245 ◽  
Author(s):  
Michael Winton ◽  
Alistair Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
Larry W. Horowitz ◽  
...  

Abstract The influence of alternative ocean and atmosphere subcomponents on climate model simulation of transient sensitivities is examined by comparing three GFDL climate models used for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The base model ESM2M is closely related to GFDL’s CMIP3 climate model version 2.1 (CM2.1), and makes use of a depth coordinate ocean component. The second model, ESM2G, is identical to ESM2M but makes use of an isopycnal coordinate ocean model. The authors compare the impact of this “ocean swap” with an “atmosphere swap” that produces the GFDL Climate Model version 3 (CM3) by replacing the AM2 atmospheric component with AM3 while retaining a depth coordinate ocean model. The atmosphere swap is found to have much larger influence on sensitivities of global surface temperature and Northern Hemisphere sea ice cover. The atmosphere swap also introduces a multidecadal response time scale through its indirect influence on heat uptake. Despite significant differences in their interior ocean mean states, the ESM2M and ESM2G simulations of these metrics of climate change are very similar, except for an enhanced high-latitude salinity response accompanied by temporarily advancing sea ice in ESM2G. In the ESM2G historical simulation this behavior results in the establishment of a strong halocline in the subpolar North Atlantic during the early twentieth century and an associated cooling, which are counter to observations in that region. The Atlantic meridional overturning declines comparably in all three models.


2021 ◽  
Author(s):  
Vladimir Semenov ◽  
Tatiana Matveeva

<p>Global warming in the recent decades has been accompanied by a rapid recline of the Arctic sea ice area most pronounced in summer (10% per decade). To understand the relative contribution of external forcing and natural variability to the modern and future sea ice area changes, it is necessary to evaluate a range of long-term variations of the Arctic sea ice area in the period before a significant increase in anthropogenic emissions of greenhouse gases into the atmosphere. Available observational data on the spatiotemporal dynamics of Arctic sea ice until 1950s are characterized by significant gaps and uncertainties. In the recent years, there have appeared several reconstructions of the early 20<sup>th</sup> century Arctic sea ice area that filled the gaps by analogue methods or utilized combined empirical data and climate model’s output. All of them resulted in a stronger that earlier believed negative sea ice area anomaly in the 1940s concurrent with the early 20<sup>th</sup> century warming (ETCW) peak. In this study, we reconstruct the monthly average gridded sea ice concentration (SIC) in the first half of the 20th century using the relationship between the spatiotemporal features of SIC variability, surface air temperature over the Northern Hemisphere extratropical continents, sea surface temperature in the North Atlantic and North Pacific, and sea level pressure. In agreement with a few previous results, our reconstructed data also show a significant negative anomaly of the Arctic sea ice area in the middle of the 20th century, however with some 15% to 30% stronger amplitude, about 1.5 million km<sup>2</sup> in September and 0.7 million km<sup>2</sup> in March. The reconstruction demonstrates a good agreement with regional Arctic sea ice area data when available and suggests that ETWC in the Arctic has been accompanied by a concurrent sea ice area decline of a magnitude that have been exceeded only in the beginning of the 21<sup>st</sup> century.</p>


2021 ◽  
pp. 1-47
Author(s):  
Robin Clancy ◽  
Cecilia M. Bitz ◽  
Edward Blanchard-Wrigglesworth ◽  
Marie C. McGraw ◽  
Steven M. Cavallo

AbstractArctic cyclones are an extremely common, year-round phenomenon, with substantial influence on sea ice. However, few studies address the heterogeneity in the spatial patterns in the atmosphere and sea ice during Arctic cyclones. We investigate these spatial patterns by compositing on cyclones from 1985-2016 using a novel, cyclone-centered approach that reveals conditions as functions of bearing and distance from cyclone centers. An axisymmetric, cold core model for the structure of Arctic cyclones has previously been proposed, however, we show that the structure of Arctic cyclones is comparable to those in the mid-latitudes, with cyclonic surface winds, a warm, moist sector to the east of cyclones and a cold, dry sector to the west. There is no consensus on the impact of Arctic cyclones on sea ice, as some studies have shown that Arctic cyclones lead to sea ice growth and others to sea ice loss. Instead, we find that sea ice decreases to the east of Arctic cyclones and increases to the west, with the greatest changes occurring in the marginal ice zone. Using a sea ice model forced with prescribed atmospheric reanalysis, we reveal the relative importance of the dynamic and thermodynamic forcing of Arctic cyclones on sea ice. The dynamic and thermodynamic responses of sea ice concentration to cyclones are comparable in magnitude, however dynamic processes dominate the response of sea ice thickness and are the primary driver of the east-west difference in the sea ice response to cyclones.


2019 ◽  
Vol 53 (11) ◽  
pp. 7113-7130
Author(s):  
Takahiro Toyoda ◽  
Katsushi Iwamoto ◽  
L. Shogo Urakawa ◽  
Hiroyuki Tsujino ◽  
Hideyuki Nakano ◽  
...  

Abstract The presence of thin sea ice is indicative of active freezing conditions in the polar ocean. We propose a simple yet effective method to incorporate information of thin-ice category into coupled ocean–sea-ice model simulations. In our approach, the thin-ice distribution restricts thick-ice extent and constrains atmosphere–ocean heat exchange through the sea ice. Our model simulation with the incorporation of satellite-derived thin-ice data for the Arctic Ocean showed much improved representation of sea-ice and upper-ocean fields, including sea-ice thickness in the Canadian Archipelago and the region north of Greenland, mixed-layer depth over the Central Arctic, and surface-layer salinity over the open ocean. Enhanced sea-ice production by the thin-ice data constraint increased the total sea-ice volume of the Arctic Ocean by $$5 \times 10^{3}$$ 5 × 10 3 –$$10 \times 10^{3}$$ 10 × 10 3  km3. Subsequent sea-ice melting was also enhanced, leading to the greater amplitude of the seasonal cycle by approximately $$2 \times 10^{3}$$ 2 × 10 3  km3 (15% of the baseline value from the experiment without the thin-ice data incorporation). Overall, our results demonstrate that the incorporation of satellite-derived information on thin sea ice has great potential for the improvement of coupled ocean–sea-ice simulations.


Sign in / Sign up

Export Citation Format

Share Document