Hail Day Frequency Trends and Associated Atmospheric Circulation Patterns over China during 1960–2012

2016 ◽  
Vol 29 (19) ◽  
pp. 7027-7044 ◽  
Author(s):  
Mingxin Li ◽  
Qinghong Zhang ◽  
Fuqing Zhang

Abstract Based on a comprehensive collection of hail observations and the NCEP–NCAR reanalyses from 1960 to 2012, the long-term trends of hail day frequency in mainland China and the associated changes in atmospheric circulation patterns were analyzed. There was no detectable trend in hail frequency from 1960 to the early 1980s, but a significant decreasing trend was apparent in later periods throughout most of China and in particular over the Tibetan Plateau from the early 1980s and over northern and northwestern China from the early 1990s. Hail frequency in southern China did not decrease as significantly as in other regions over the last couple of decades. An objective classification method, the obliquely rotated T-mode principal component technique, was used to investigate atmospheric circulation patterns. It was found that 51.85% of the hail days occurred during two major circulation types, both of which were associated with cold frontal systems in northern China. More specifically, the synoptic trough in East Asia, signified by the meridional circulation at 850 hPa, became considerably weaker after 1990. This change in the synoptic pattern is consistent with a weakening trend in the East Asian summer monsoon, the primary dynamic forcing of moisture transport that contributes to the generation of severe convection in northern China. The long-term variability of hail day frequency over the Tibetan Plateau was more strongly correlated with the change in mean freezing-level height (FLH) than the strength of the East Asian monsoon.

2020 ◽  
Vol 125 (12) ◽  
Author(s):  
Tiangang Yuan ◽  
Siyu Chen ◽  
Lin Wang ◽  
Yaoxian Yang ◽  
Hongru Bi ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhibiao Wang ◽  
Renguang Wu ◽  
Zhang Chen ◽  
Lihua Zhu ◽  
Kai Yang ◽  
...  

In recent years, some studies emphasized the influence of western Tibetan Plateau summer snow on the East Asian summer precipitation. With the temperature rise in the past decades, the snow cover over the western Tibetan Plateau in summer has significantly decreased. This raises the question whether the impact of the Tibetan Plateau snow has changed. The present study identifies a prominent change in the influence of the western Tibetan Plateau snow cover on the East Asian summer precipitation. Before the early 2000’s, positive precipitation anomalies extend from the southeastern Tibetan Plateau through the Yangtze River to Japan and Korea and negative anomalies cover southeast China corresponding to more Tibetan Plateau snow cover. After the early 2000’s, with the reduction of snow cover variability, below-normal and above-normal summer precipitation occurs over northern China-Mongolia and northeast Asia, respectively, corresponding to more Tibetan Plateau snow cover. The change in the influence of the Tibetan Plateau snow on the East Asian summer precipitation is associated with an obvious change in the atmospheric circulation anomaly pattern. Before the early 2000’s, the wind anomalies display a south-north contrast pattern with anomalous convergence along the Yangtze River. After the early 2000’s, an anomalous cyclone occupies Northeast China with anomalous southerlies and northerlies over northeast Asia and northern China, respectively. The Tibetan Plateau snow cover variation after the early 2000’s is associated with the northeast Indian summer precipitation. The model experiments confirm that the weakened influence of summer western Tibetan Plateau snow cover on the East Asian atmospheric circulation and precipitation with the reduced snow cover anomalies.


2016 ◽  
Vol 29 (4) ◽  
pp. 1339-1352 ◽  
Author(s):  
Zhongyin Cai ◽  
Lide Tian

ABSTRACT Understanding variations in isotopic composition of precipitation from monsoon regions is crucial for its utilization in paleoclimate studies. This study explores the relationship between precipitation δ18O data for the East Asian monsoon (EAM) region archived in Global Network for Isotopes in Precipitation (GNIP) and the cloud data archived in ISCCP and their linkage with large-scale atmospheric circulation patterns. Results show that precipitation δ18O are significantly and positively correlated with cloud-top pressure (CTP) on both local and regional scales. Mechanically speaking, the stronger the monsoon convection precipitation, the higher the cloud and the lower the condensation temperature and thus the lower the precipitation δ18O. This result implies that the sharp drop in precipitation δ18O in the early summer in monsoonal Asia is related to the atmospheric circulation pattern rather than the different moisture sources, as was previously assumed. This result helps explain the processes leading to the observed “amount effect.” A comparison of atmospheric circulation patterns with precipitation δ18O on an interannual scale shows that the positive CTP anomalies in the central Indo-Pacific within the weak Walker circulation (El Niño) can be associated with positive δ18O anomalies, while negative CTP anomalies in the central Indo-Pacific within the strong Walker circulation (La Niña) can be linked to negative δ18O anomalies. This result further confirms the aforementioned conclusion. This is important for understanding paleoclimatic change in monsoonal Asia, as interannual variations in stable isotopes in that region have received less attention in the past.


2021 ◽  
pp. 1-59
Author(s):  
Shi-Xin Wang ◽  
Hong-Chao Zuo ◽  
Fen Sun ◽  
Li-Yang Wu ◽  
Yixing Yin ◽  
...  

AbstractDynamics of the East Asian spring rainband are investigated with reanalysis dataset and station observations. Here, it is revealed that the rainband is anchored by external forcings. Midtropospheric jet core stays quasi-stationary around Japan. It has two branches in its entry region, which originate from the south and north flanks of Tibetan Plateau and then run northeastward and southeastward, respectively. The southern branch advects warm air from the Hengduan-Tibetan plateaus northeastwards, forming rainband over southern China through both causing adiabatic ascent motion and triggering diabatic feedback. The rainband is much stronger in spring than in autumn due to the stronger diabatic heating over Hengduan-Tibetan Plateau, more southward-displaced midtropospheric jet and resultant stronger warm advection over southern China. The northern jet branch forms a zonally-elongated cold advection belt, which reaches the maximum around northern China, and then weakens and extends eastwards towards east of Japan. The westerly jet also steers strong disturbance activities roughly collocated with the cold advection belt via baroclinic instability. The high disturbance activities belt causes large cumulative warm advections (CWA) through drastically increasing extremely warm-advection days in its eastern and south flank, where weak cold advection prevails. CWA is more essential for monthly/seasonally rainfall than conventionally-used time-average temperature advection because it is revealed that strengthened warm advection can increase rainfall through positive diabatic feedback, while cold advection cannot cause negative rainfall. Thus, the rainband is collocated with the large CWA belt instead of the 48 warm advection south of it. This rainband is jointed to the rainband over southern China, forming the long southwest-northeast-oriented East Asian spring rainband. Southeastward-increasing moisture slightly displaces the rainband southeastwards.


2010 ◽  
Vol 23 (6) ◽  
pp. 1544-1562 ◽  
Author(s):  
Ping Zhao ◽  
Song Yang ◽  
Rucong Yu

Abstract Using precipitation data from rain gauge stations over China, the authors examine the long-term variation of the durations of persistent rainfall over eastern China for the past 40 years. The variation in the regional rainfall was related to a change in the global-mean surface temperature from the relatively cold period of the 1960s–70s to the relatively warm period of the 1980s–90s. Compared to the cold period, the persistent rainfall in the warm period began earlier and ended later over southern China, lengthening the rainy season by 23 days, but it began later and ended earlier over northern China, shortening the rainy season by 14 days. This change in the durations of persistent rainfall contributed to the pattern of the long-term change in rainfall: southern floods and northern droughts. The earlier beginning of the rainy season over southern China was associated with a more westward subtropical high over the western North Pacific and a stronger low-level low near the eastern Tibetan Plateau during spring. On the other hand, the later ending of the rainy season over southern China and the shorter rainy season over northern China were related to a more westward subtropical high over the western Pacific and a weaker trough near the eastern Tibetan Plateau during summer. The snow cover over the Tibetan Plateau exhibited a positive trend in winter and spring, which increased the local soil moisture content and cooled the overlying atmosphere during spring and summer. The sea surface temperature over the tropical Indian Ocean and the western North Pacific also displayed a positive trend. The cooling over land and the warming over oceans reduced the thermal contrast between East Asia and the adjacent oceans. Moreover, the low-level low pressure system over East Asia weakened during summer. Under such circumstances, the East Asian summer monsoon circulation weakened, with anomalous northerly winds over eastern China. Correspondingly, the mei-yu front stagnated over the Yangtze River valley, and the associated pattern of vertical motions increased the rainfall over the valley and decreased the rainfall over northern China.


Sign in / Sign up

Export Citation Format

Share Document