scholarly journals Characteristics and Impacts of Extratropical Rossby Wave Breaking during the Atlantic Hurricane Season

2017 ◽  
Vol 30 (7) ◽  
pp. 2363-2379 ◽  
Author(s):  
Gan Zhang ◽  
Zhuo Wang ◽  
Melinda S. Peng ◽  
Gudrun Magnusdottir

This study investigates the characteristics of extratropical Rossby wave breaking (RWB) during the Atlantic hurricane season and its impacts on Atlantic tropical cyclone (TC) activity. It was found that RWB perturbs the wind and moisture fields throughout the troposphere in the vicinity of a breaking wave. When RWB occurs more frequently over the North Atlantic, the Atlantic main development region (MDR) is subject to stronger vertical wind shear and reduced tropospheric moisture; the basinwide TC counts are reduced, and TCs are generally less intense, have a shorter lifetime, and are less likely to make landfalls. A significant negative correlation was found between Atlantic TC activity and RWB occurrence during 1979–2013. The correlation is comparable to that with the MDR SST index and stronger than that with the Niño-3.4 index. Further analyses suggest that the variability of RWB occurrence in the western Atlantic is largely independent of that in the eastern Atlantic. The RWB occurrence in the western basin is more closely tied to the environmental variability of the tropical North Atlantic and is more likely to hinder TC intensification or reduce the TC lifetime because of its proximity to the central portion of TC tracks. Consequently, the basinwide TC counts and the accumulated cyclone energy have a strong correlation with western-basin RWB occurrence but only a moderate correlation with eastern-basin RWB occurrence. The results highlight the extratropical impacts on Atlantic TC activity and regional climate via RWB and provide new insights into the variability and predictability of TC activity.

2019 ◽  
Vol 32 (13) ◽  
pp. 3777-3801 ◽  
Author(s):  
Gan Zhang ◽  
Zhuo Wang

Abstract This study explores the connection of Rossby wave breaking (RWB) with tropical and extratropical variability during the Atlantic hurricane season. The exploration emphasizes subtropical anticyclonic RWB events over the western North Atlantic, which strongly affect tropical cyclone (TC) activity. The first part of the study investigates the link between RWB and tropical sea surface temperature (SST) variability. Tropical SST variability affects tropical precipitation and modulates the large-scale atmospheric circulation over the subtropical Atlantic, which influences the behaviors of Rossby waves and the frequency of RWB occurrence. Meanwhile, RWB regulates surface heat fluxes and helps to sustain SST anomalies in the western North Atlantic. The second part of the study explores the connections between RWB and extratropical atmosphere variability by leveraging weather regime analysis. The weather regimes over the North Atlantic are closely associated with RWB over the eastern North Atlantic and western Europe, but show weak associations with RWB over the western North Atlantic. Instead, RWB over the western basin is closely related to the weather regimes in the North Pacific–North America sector. The finding helps clarify why the correlation between the Atlantic TC activity and the summertime North Atlantic Oscillation is tenuous. The relations between the extratropical weather regimes and tropical climate modes are also discussed. The findings suggest that both tropical and extratropical variability are important for understanding variations of RWB events and their impacts on Atlantic TC activity.


2017 ◽  
Vol 74 (6) ◽  
pp. 1735-1755 ◽  
Author(s):  
Erik T. Swenson ◽  
David M. Straus

Abstract The occurrence of boreal winter Rossby wave breaking (RWB) along with the quantitative role of synoptic transient eddy momentum and heat fluxes directly associated with RWB are examined during the development of Euro-Atlantic circulation regimes using ERA-Interim. Results are compared to those from seasonal reforecasts made using the Integrated Forecast System model of ECWMF coupled to the NEMO ocean model. The development of both Scandinavian blocking and the Atlantic ridge is directly coincident with anticyclonic wave breaking (AWB); however, the associated transient eddy fluxes do not contribute to (and, in fact, oppose) ridge growth, as indicated by the local Eliassen–Palm (EP) flux divergence. Evidently, other factors drive development, and it appears that wave breaking assists more with ridge decay. The growth of the North Atlantic Oscillation (NAO) in its positive phase is independent of RWB in the western Atlantic but strongly linked to AWB farther downstream. During AWB, the equatorward flux of cold air at upper levels contributes to a westerly tendency just as much as the poleward flux of momentum. The growth of the negative phase of the NAO is almost entirely related to cyclonic wave breaking (CWB), during which equatorward momentum flux dominates at jet level, yet low-level heat fluxes dominate below. The reforecasts yield realistic frequencies of CWB and AWB during different regimes, as well as realistic estimates of their roles during development. However, a slightly weaker role of RWB is simulated, generally consistent with a weaker anomalous circulation.


2011 ◽  
Vol 68 (5) ◽  
pp. 954-963 ◽  
Author(s):  
Tim Woollings ◽  
Joaquim G. Pinto ◽  
João A. Santos

Abstract The development of a particular wintertime atmospheric circulation regime over the North Atlantic, comprising a northward shift of the North Atlantic eddy-driven jet stream and an associated strong and persistent ridge in the subtropics, is investigated. Several different methods of analysis are combined to describe the temporal evolution of the events and relate it to shifts in the phase of the North Atlantic Oscillation and East Atlantic pattern. First, the authors identify a close relationship between northward shifts of the eddy-driven jet, the establishment and maintenance of strong and persistent ridges in the subtropics, and the occurrence of upper-tropospheric anticyclonic Rossby wave breaking over Iberia. Clear tropospheric precursors are evident prior to the development of the regime, suggesting a preconditioning of the Atlantic jet stream and an upstream influence via a large-scale Rossby wave train from the North Pacific. Transient (2–6 days) eddy forcing plays a dual role, contributing to both the initiation and then the maintenance of the circulation anomalies. During the regime there is enhanced occurrence of anticyclonic Rossby wave breaking, which may be described as low-latitude blocking-like events over the southeastern North Atlantic. A strong ridge is already established at the time of wave-breaking onset, suggesting that the role of wave-breaking events is to amplify the circulation anomalies rather than to initiate them. Wave breaking also seems to enhance the persistence, since it is unlikely that a persistent ridge event occurs without being also accompanied by wave breaking.


2020 ◽  
Vol 33 (14) ◽  
pp. 5953-5969 ◽  
Author(s):  
Philippe P. Papin ◽  
Lance F. Bosart ◽  
Ryan D. Torn

AbstractThis study examines climatological potential vorticity streamer (PVS) activity associated with Rossby wave breaking (RWB), which can impact TC activity in the subtropical North Atlantic (NATL) basin via moisture and wind anomalies. PVSs are identified along the 2-PVU (1 PVU = 10−6 K kg−1 m2 s−1) contour on the 350-K isentropic surface, using a unique identification technique that combines previous methods. In total, 21 149 individual PVS instances are identified from the ERA-Interim (ERAI) climatology during June–November over 1979–2015 with a peak in July–August. The total number of PVSs identified in this study is more than previous PVS climatologies for this region, since the new technique identifies a wider range of cases. Variations in PVS size and intensity prompt the development of a new PVS activity index (PVSI), which provides an integrated measure of PVS activity that can improve comparisons with TC activity. For instance, PVSI has a stronger negative correlation with seasonal TC activity (r = −0.55) relative to PVS frequency, size, or intensity alone. PVSI in June–July is also positively correlated with PVSI in August–November (r = 0.67), suggesting predictive capability. Compared to the ERAI and Japan Meteorological Agency 55-Year Reanalysis (JRA-55) climatology, there are more PVSs in the Climate Forecast System Reanalysis (CFSR) but these have weaker average intensity overall. While no long-term trend in PVSI is observed in the ERAI or JRA-55 climatologies, a negative trend is observed in CFSR, which could be related to differences in near tropopause static stability early in the climatological period (1979–86) between the CFSR and ERAI datasets.


2020 ◽  
Author(s):  
Franziska Aemisegger ◽  
Raphaela Vogel ◽  
Pascal Graf ◽  
Fabienne Dahinden ◽  
Leonie Villiger ◽  
...  

Abstract. The interaction between low-level tropical clouds and the large-scale circulation is a key feedback element in our climate system, but our understanding of it is still fragmentary. In this paper, the role of upper-level extratropical dynamics for the development of contrasting shallow cumulus cloud patterns in the western North Atlantic trade wind region is investigated. Stable water isotopes are used as tracers for the origin of air parcels arriving in the sub-cloud layer above Barbados, measured continuously in water vapour at the Barbados Cloud Observatory during a 24-day measurement campaign (isoTrades, 25 January to 17 February 2018). This data is combined with a detailed air parcel back-trajectory analysis using hourly ERA5 reanalyses of the European Centre for Medium Range Weather Forecasts. A climatological investigation of the 10-day air parcel history for January and February in the recent decade shows that 55 % of the air parcels arriving in the sub-cloud layer have spent at least one day in the extratropics (north of 35° N) before arriving in the eastern Caribbean at about 13° N. In 2018, this share of air parcels with extratropical origin was anomalously large with 88 %. In two detailed case studies during the campaign, two flow regimes with distinct isotope signatures transporting extratropical air into the Caribbean are investigated. In both regimes, the air parcels descend from the lower part of the midlatitude jet stream towards the equator, at the eastern edge of subtropical anticyclones, in the context of Rossby wave breaking events. The zonal location of the wave breaking, and the surface anticyclone, determines the dominant transport regime. The first regime represents the typical trade wind situation with easterly winds bringing moist air from the eastern North Atlantic into the Caribbean, in a deep layer from the surface up to ∼600 hPa. The moisture source of the sub-cloud layer water vapour is located on average 2000 km upstream of Barbados. In this regime, Rossby wave breaking and the descent of air from the extratropics occurs in the eastern North Atlantic, at about 33° W. The second regime is associated with air parcels descending slantwise by on average 300 hPa (6 d)-1 directly from the northeast, i.e., at about 50° W. These originally dry airstreams experience a more rapid moistening than typical trade wind air parcels when interacting with the subtropical oceanic boundary layer, with moisture sources being located on average 1350 km upstream to the northeast of Barbados. The descent of dry air in the second regime can be steered towards the Caribbean by the interplay of a persistent upper-level cutoff low over the central North Atlantic (about 45° W) and the associated surface cyclone underneath. The zonal location of Rossby wave breaking, and consequently, the pathway of extratropical air towards the Caribbean, is shown to be relevant for the sub-cloud layer humidity and shallow cumulus cloud cover properties of the North Atlantic winter trades. Overall, this study highlights the importance of extratropical dynamical processes for the tropical water cycle and reveals that these processes lead to a substantial modulation of stable water isotope signals in the near-surface humidity.


2021 ◽  
Author(s):  
Bernhard Enz ◽  
David Neubauer ◽  
Michael Sprenger ◽  
Ulrike Lohmann

<p><span>Tropical cyclones are a weather phenomenon that can devastate coastlines and cause substantial harm to human life and infrastructure every year. Their seasonal prediction is an effort that has been undertaken for several decades. These predictions are generally useful and have skill. The 2013 season was predicted as above average in activity by all forecasting agencies, but was one of the least active on record. A previously proposed reason for this is the abundance of Rossby wave breaking in the north Atlantic, which dries and cools the tropics by mixing in extratropical air. While the existence of this mechanism is not disputed, other pathways linked to the interactions between tropical and extratropical air masses are suggested and evaluated in this study</span></p><p>The numerical model ICON is used in Limited Area Mode (~13 km horizontal resolution) to simulate the north Atlantic, using ERA5 data for the hurricane season of 2013 to prescribe initial and boundary conditions. To influence Rossby wave breaking, a set of simulations uses 30 day running mean boundary conditions in the northern part of the domain, while a reference set uses regular boundary conditions everywhere along the boundary. Though the results do not falsify the aforementioned hypothesis of the abundance of Rossby wave breaking influencing tropical cyclone activity, they suggest that other mechanisms, such as changes in steering flow, tropopause temperature and wind shear, could also be responsible for changes in tropical cyclone activity. Furthermore, the accumulated cyclone energy seems to be rather closely related to the mean latitude of the 2 potential vorticity unit contour on the 350 K isentropic surface within a small longitudinal window in the western Atlantic.</p>


2020 ◽  
Author(s):  
Franziska Aemisegger ◽  
Raphaela Vogel ◽  
Pascal Graf ◽  
Fabienne Dahinden ◽  
Leonie Villiger ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 281-309
Author(s):  
Franziska Aemisegger ◽  
Raphaela Vogel ◽  
Pascal Graf ◽  
Fabienne Dahinden ◽  
Leonie Villiger ◽  
...  

Abstract. The interaction between low-level tropical clouds and the large-scale circulation is a key feedback element in our climate system, but our understanding of it is still fragmentary. In this paper, the role of upper-level extratropical dynamics for the development of contrasting shallow cumulus cloud patterns in the western North Atlantic trade wind region is investigated. Stable water isotopes are used as tracers for the origin of air parcels arriving in the sub-cloud layer above Barbados, measured continuously in water vapour at the Barbados Cloud Observatory during a 24 d measurement campaign (isoTrades, 25 January to 17 February 2018). These data are combined with a detailed air parcel back-trajectory analysis using hourly ERA5 reanalyses of the European Centre for Medium-Range Weather Forecasts. A climatological investigation of the 10 d air parcel history for January and February in the recent decade shows that 55 % of the air parcels arriving in the sub-cloud layer have spent at least 1 d in the extratropics (north of 35∘ N) before arriving in the eastern Caribbean at about 13∘ N. In 2018, this share of air parcels with extratropical origin was anomalously large, with 88 %. In two detailed case studies during the campaign, two flow regimes with distinct isotope signatures transporting extratropical air into the Caribbean are investigated. In both regimes, the air parcels descend from the lower part of the midlatitude jet stream towards the Equator, at the eastern edge of subtropical anticyclones, in the context of Rossby wave breaking events. The zonal location of the wave breaking and the surface anticyclone determine the dominant transport regime. The first regime represents the “typical” trade wind situation, with easterly winds bringing moist air from the eastern North Atlantic into the Caribbean, in a deep layer from the surface up to ∼600 hPa. The moisture source of the sub-cloud layer water vapour is located on average 2000 km upstream of Barbados. In this regime, Rossby wave breaking and the descent of air from the extratropics occur in the eastern North Atlantic, at about 33∘ W. The second regime is associated with air parcels descending slantwise by on average 300 hPa (6 d)−1 directly from the north-east, i.e. at about 50∘ W. These originally dry airstreams experience a more rapid moistening than typical trade wind air parcels when interacting with the subtropical oceanic boundary layer, with moisture sources being located on average 1350 km upstream to the north-east of Barbados. The descent of dry air in the second regime can be steered towards the Caribbean by the interplay of a persistent upper-level cut-off low over the central North Atlantic (about 45∘ W) and the associated surface cyclone underneath. The zonal location of Rossby wave breaking and, consequently, the pathway of extratropical air towards the Caribbean are shown to be relevant for the sub-cloud layer humidity and shallow-cumulus-cloud-cover properties of the North Atlantic winter trades. Overall, this study highlights the importance of extratropical dynamical processes for the tropical water cycle and reveals that these processes lead to a substantial modulation of stable water isotope signals in the near-surface humidity.


2021 ◽  
Vol 21 (13) ◽  
pp. 10249-10272
Author(s):  
Lukas Krasauskas ◽  
Jörn Ungermann ◽  
Peter Preusse ◽  
Felix Friedl-Vallon ◽  
Andreas Zahn ◽  
...  

Abstract. This paper presents measurements of ozone, water vapour and nitric acid (HNO3) in the upper troposphere/lower stratosphere (UTLS) over North Atlantic and Europe. The measurements were acquired with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) during the Wave Driven Isentropic Exchange (WISE) campaign in October 2017. GLORIA is an airborne limb imager capable of acquiring both 2-D data sets (curtains along the flight path) and, when the carrier aircraft is flying around the observed air mass, spatially highly resolved 3-D tomographic data. Here, we present a case study of a Rossby wave (RW) breaking event observed during two subsequent flights 2 d apart. RW breaking is known to steepen tracer gradients and facilitate stratosphere–troposphere exchange (STE). Our measurements reveal complex spatial structures in stratospheric tracers (ozone and nitric acid) with multiple vertically stacked filaments. Backward-trajectory analysis is used to demonstrate that these features are related to several previous Rossby wave breaking events and that the small-scale structure of the UTLS in the Rossby wave breaking region, which is otherwise very hard to observe, can be understood as stirring and mixing of air masses of tropospheric and stratospheric origin. It is also shown that a strong nitric acid enhancement observed just above the tropopause is likely a result of NOx production by lightning activity. The measurements showed signatures of enhanced mixing between stratospheric and tropospheric air near the polar jet with some transport of water vapour into the stratosphere. Some of the air masses seen in 3-D data were encountered again 2 d later, stretched to very thin filament (horizontal thickness down to 30 km at some altitudes) rich in stratospheric tracers. This repeated measurement allowed us to directly observe and analyse the progress of mixing processes in a thin filament over 2 d. Our results provide direct insight into small-scale dynamics of the UTLS in the Rossby wave breaking region, which is of great importance to understanding STE and poleward transport in the UTLS.


Sign in / Sign up

Export Citation Format

Share Document