scholarly journals Defining Sudden Stratospheric Warming in Climate Models: Accounting for Biases in Model Climatologies

2017 ◽  
Vol 30 (14) ◽  
pp. 5529-5546 ◽  
Author(s):  
Junsu Kim ◽  
Seok-Woo Son ◽  
Edwin P. Gerber ◽  
Hyo-Seok Park

A sudden stratospheric warming (SSW) is often defined as zonal-mean zonal wind reversal at 10 hPa and 60°N. This simple definition has been applied not only to the reanalysis data but also to climate model output. In the present study, it is shown that the application of this definition to models can be significantly influenced by model mean biases (i.e., more frequent SSWs appear to occur in models with a weaker climatological polar vortex). To overcome this deficiency, a tendency-based definition is proposed and applied to the multimodel datasets archived for phase 5 of the Coupled Model Intercomparison Project (CMIP5). In this definition, SSW-like events are defined by sufficiently strong vortex deceleration. This approach removes a linear relationship between SSW frequency and intensity of the climatological polar vortex in the CMIP5 models. The models’ SSW frequency instead becomes significantly correlated with the climatological upward wave flux at 100 hPa, a measure of interaction between the troposphere and stratosphere. Lower stratospheric wave activity and downward propagation of stratospheric anomalies to the troposphere are also reasonably well captured. However, in both definitions, the high-top models generally exhibit more frequent SSWs than the low-top models. Moreover, a hint of more frequent SSWs in a warm climate is found in both definitions.

2020 ◽  
Author(s):  
Maria Tarasevich ◽  
Evgeny Volodin

<p>Extreme climate and weather events have a great influence on society and natural systems. That’s why it is important to be able to precisely simulate these events with the climate models. To asses the quality of such simulations 27 climate extremes indices were defined by ETCCDI. In the present work these indices are calculated for the 1901–2010 in order to estimate their trends.<br>Climate extremes trends are studied on the basis of ten historical runs with the up-to-date INM RAS climate model (INMCM5) under the scenario proposed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Developed by ECMWF ERA-20C and CERA-20C reanalyses are taken as observational data.<br>Trends obtained from the reanalysis data are compared with the simulation results of the INMCM5. The comparison shows that the simulated land-averaged climate extremes trends are in good agreement with the reanalysis data, but their spatial distributions differ significantly even between the reanalyses themselves.</p>


2020 ◽  
Author(s):  
Reinhard Schiemann ◽  
Panos Athanasiadis ◽  
David Barriopedro ◽  
Francisco Doblas-Reyes ◽  
Katja Lohmann ◽  
...  

Abstract. Global Climate Models (GCMs) are known to suffer from biases in the simulation of atmospheric blocking, and this study provides an assessment of how blocking is represented by the latest generation of GCMs. It is evaluated (i) how historical CMIP6 (Climate Model Intercomparison Project Phase 6) simulations perform compared to CMIP5 simulations, and (ii) how horizontal model resolution affects the simulation of blocking in the CMIP6-HighResMIP (PRIMAVERA) model ensemble, which is designed to address this type of question. Two blocking indices are used to evaluate the simulated mean blocking frequency and blocking persistence for the Euro-Atlantic and Pacific regions in winter and summer against the corresponding estimates from atmospheric reanalysis data. There is robust evidence that CMIP6 models simulate blocking frequency and persistence better than CMIP5 models in the Atlantic and Pacific and in winter and summer. This improvement is sizeable so that, for example, winter blocking frequency in the median CMIP5 model in a large Euro-Atlantic domain is underestimated by 32 % using the absolute geopotential height (AGP) blocking index, whereas the same number is 19 % for the median CMIP6 model. As for the sensitivity of simulated blocking to resolution, it is found that the resolution increase, from typically 100 km to 20 km grid spacing, in the PRIMAVERA models, which are not re-tuned at the higher resolutions, benefits the mean blocking frequency in the Atlantic in winter and summer, and in the Pacific in summer. Simulated blocking persistence, however, is not seen to improve with resolution. Our results are consistent with previous studies suggesting that resolution is one of a number of interacting factors necessary for an adequate simulation of blocking in GCMs. The improvements reported in this study hold promise for further reductions in blocking biases as model development continues.


2017 ◽  
Vol 30 (17) ◽  
pp. 7071-7086 ◽  
Author(s):  
Alexey Yu. Karpechko ◽  
Elisa Manzini

The role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming is investigated here by analyzing simulations performed with atmosphere-only models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) driven by prescribed sea surface temperatures (SSTs). Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer–Dobson circulation; however, until now, no satisfactory mechanism for such a response has been suggested. This study focuses on December–February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analyzed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wavenumber 1, as diagnosed by the meridional eddy heat flux. Further, it is shown that the stratospheric warming and increased wave flux to the stratosphere are related to the strengthening of the zonal winds in subtropics and midlatitudes near the tropopause. Evidence presented in this paper corroborate climate model simulations of future stratospheric changes and suggest a dynamical warming of the Arctic polar vortex as the most likely response to global warming.


2020 ◽  
Author(s):  
Reinhard Schiemann ◽  
Panos Athanasiadis ◽  
David Barriopedro ◽  
Francisco Doblas-Reyes ◽  
Katja Lohmann ◽  
...  

<p>Global Climate Models (GCMs) are known to suffer from biases in the simulation of atmospheric blocking, and this study provides an assessment of how blocking is represented by the latest generation of GCMs. It is evaluated (i) how historical CMIP6 (Climate Model Intercomparison Project Phase 6) simulations perform compared to CMIP5 simulations, and (ii) how horizontal model resolution affects the simulation of blocking in the CMIP6-HighResMIP (PRIMAVERA) model ensemble, which is designed to address this type of question. Two blocking indices are used to evaluate the simulated mean blocking frequency and blocking persistence for the Euro-Atlantic and Pacific regions in winter and summer against the corresponding estimates from atmospheric reanalysis data. There is robust evidence that CMIP6 models simulate blocking frequency and persistence better than CMIP5 models in the Atlantic and Pacific and in winter and summer. This improvement is sizeable so that, for example, winter blocking frequency in the median CMIP5 model in a large Euro-Atlantic domain is underestimated by 32 % using the absolute geopotential height (AGP) blocking index, whereas the same number is 19 % for the median CMIP6 model. As for the sensitivity of simulated blocking to resolution, it is found that the resolution increase, from typically 100 km to 20 km grid spacing, in the PRIMAVERA models, which are not re-tuned at the higher resolutions, benefits the mean blocking frequency in the Atlantic in winter and summer, and in the Pacific in summer. Simulated blocking persistence, however, is not seen to improve with resolution. Our results are consistent with previous studies suggesting that resolution is one of a number of interacting factors necessary for an adequate simulation of blocking in GCMs. The improvements reported in this study hold promise for further reductions in blocking biases as model development continues.</p>


2021 ◽  
Author(s):  
Yoann Robin ◽  
Aurélien Ribes

<p>We describe a statistical method to derive event attribution diagnoses combining climate model simulations and observations. We fit nonstationary Generalized Extreme Value (GEV) distributions to extremely hot temperatures from an ensemble of Coupled Model Intercomparison Project phase 5 (CMIP)<br>models. In order to select a common statistical model, we discuss which GEV parameters have to be nonstationary and which do not. Our tests suggest that the location and scale parameters of GEV distributions should be considered nonstationary. Then, a multimodel distribution is constructed and constrained by observations using a Bayesian method. This new method is applied to the July 2019 French heatwave. Our results show that<br>both the probability and the intensity of that event have increased significantly in response to human influence.<br>Remarkably, we find that the heat wave considered might not have been possible without climate change. Our<br>results also suggest that combining model data with observations can improve the description of hot temperature<br>distribution.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 679 ◽  
Author(s):  
Si-Ming Liu ◽  
Yuan-Hao Chen ◽  
Jian Rao ◽  
Can Cao ◽  
Si-Yu Li ◽  
...  

After the recent release of the historical runs by community Earth system model version 2–the whole atmosphere community climate model (CESM2-WACCM), the major sudden stratospheric warming (SSW) events in this model and in its previous version (CESM1-WACCM) are compared based on a modern reanalysis (JRA55). Using the World Meteorological Organization (WMO) definition of SSWs and a threshold-based classification method that can describe the polar vortex morphology, SSWs in models and the reanalysis are further classified into two types, vortex displacement SSWs and vortex split SSWs. The general statistical characteristics of the two types of SSW events in the two model versions are evaluated. Both CESM1-WACCM and CESM2-WACCM models are shown to reproduce the SSW frequency successfully, although the circulations differences between vortex displacement SSWs and vortex split SSWs in CESM2-WACCM are smaller than in CESM1-WACCM. Composite polar temperature, geopotential height, wind, and eddy heat flux anomalies in both the two models and the reanalysis show similar evolutions. In addition, positive Pacific–North America and negative Western Pacific patterns in the troposphere preceding vortex displacement and split SSWs are observed in both observations and the models. The strong negative North Atlantic oscillation-like pattern, especially after vortex split SSW onset, is also identified in models. The near-surface cold Eurasia–warm North America pattern before both types of SSW onset, the warm Eurasia–cold North America pattern after displacement SSW onset, and the cold Eurasia–cold North America pattern after split SSW onset are consistently identified in JRA55, CESM1-WACCM, and CESM2-WACCM, although the temperature anomalies after the split SSW onset in CESM2-WACCM are somewhat underestimated.


2020 ◽  
Author(s):  
Baijun Tian

<p>The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.</p>


2020 ◽  
Author(s):  
Clare Marie Flynn ◽  
Thorsten Mauritsen

Abstract. The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient 35 climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased: 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles, and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models; the evolution of the warming suggests, however, that several of the models apply too strong aerosol cooling resulting in too weak mid 20th Century warming compared to the instrumental record.


2020 ◽  
Vol 20 (16) ◽  
pp. 9591-9618 ◽  
Author(s):  
Christopher J. Smith ◽  
Ryan J. Kramer ◽  
Gunnar Myhre ◽  
Kari Alterskjær ◽  
William Collins ◽  
...  

Abstract. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.


2021 ◽  
Author(s):  
Tristan Perotin

<p>Winter windstorms are one of the major natural hazards affecting Europe, potentially causing large damages. The study of windstorm risks is therefore particularly important for the insurance industry. Physical natural catastrophe models for the insurance industry appeared in the 1980s and enable a fine analysis of the risk by taking into account all of its components (hazard, vulnerability and exposure). One main aspect of this catastrophe modeling is the production and validation of extreme hazard scenarios. As observational weather data is very sparse before the 1980s, estimates of extreme windstorm risks are usually based on climate models, despite the limited resolution of these models. Even though this limitation can be partially corrected by statistical or dynamical downscaling and calibration techniques, new generations of climate models can bring new understanding of windstorm risks.</p><p>In that context, PRIMAVERA, a European Union Horizon2020 project, made available a windstorm event set based on 21 tier 1 (1950-2014) highresSST-present simulations of the High Resolution Model Intercomparison Project (HighResMIP) component of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The events were identified with a storm tracking algorithm, footprints were defined for each event as maximum gusts over a 72 hour period, and the footprints were re-gridded to the ERA5 grid and calibrated with a quantile mapping correction method. The native resolution of these simulations ranges from 150km (typical resolution of the CMIP5 models) to 25km.</p><p>We have studied the applicability of the PRIMAVERA European windstorm event set for the modeling of European windstorm risks for the insurance sector. Preliminary results show that losses simulated from the event set appear to be consistent with historical data for all of the included simulations. The event set enables a better representation of attritional events and storm clustering than other existing event sets. An alternative calibration technique for extreme gusts and potential future developments of the event set will be proposed.</p>


Sign in / Sign up

Export Citation Format

Share Document