scholarly journals Arctic Stratosphere Dynamical Response to Global Warming

2017 ◽  
Vol 30 (17) ◽  
pp. 7071-7086 ◽  
Author(s):  
Alexey Yu. Karpechko ◽  
Elisa Manzini

The role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming is investigated here by analyzing simulations performed with atmosphere-only models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) driven by prescribed sea surface temperatures (SSTs). Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer–Dobson circulation; however, until now, no satisfactory mechanism for such a response has been suggested. This study focuses on December–February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analyzed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wavenumber 1, as diagnosed by the meridional eddy heat flux. Further, it is shown that the stratospheric warming and increased wave flux to the stratosphere are related to the strengthening of the zonal winds in subtropics and midlatitudes near the tropopause. Evidence presented in this paper corroborate climate model simulations of future stratospheric changes and suggest a dynamical warming of the Arctic polar vortex as the most likely response to global warming.

2017 ◽  
Vol 30 (14) ◽  
pp. 5529-5546 ◽  
Author(s):  
Junsu Kim ◽  
Seok-Woo Son ◽  
Edwin P. Gerber ◽  
Hyo-Seok Park

A sudden stratospheric warming (SSW) is often defined as zonal-mean zonal wind reversal at 10 hPa and 60°N. This simple definition has been applied not only to the reanalysis data but also to climate model output. In the present study, it is shown that the application of this definition to models can be significantly influenced by model mean biases (i.e., more frequent SSWs appear to occur in models with a weaker climatological polar vortex). To overcome this deficiency, a tendency-based definition is proposed and applied to the multimodel datasets archived for phase 5 of the Coupled Model Intercomparison Project (CMIP5). In this definition, SSW-like events are defined by sufficiently strong vortex deceleration. This approach removes a linear relationship between SSW frequency and intensity of the climatological polar vortex in the CMIP5 models. The models’ SSW frequency instead becomes significantly correlated with the climatological upward wave flux at 100 hPa, a measure of interaction between the troposphere and stratosphere. Lower stratospheric wave activity and downward propagation of stratospheric anomalies to the troposphere are also reasonably well captured. However, in both definitions, the high-top models generally exhibit more frequent SSWs than the low-top models. Moreover, a hint of more frequent SSWs in a warm climate is found in both definitions.


2021 ◽  
Author(s):  
Yoann Robin ◽  
Aurélien Ribes

<p>We describe a statistical method to derive event attribution diagnoses combining climate model simulations and observations. We fit nonstationary Generalized Extreme Value (GEV) distributions to extremely hot temperatures from an ensemble of Coupled Model Intercomparison Project phase 5 (CMIP)<br>models. In order to select a common statistical model, we discuss which GEV parameters have to be nonstationary and which do not. Our tests suggest that the location and scale parameters of GEV distributions should be considered nonstationary. Then, a multimodel distribution is constructed and constrained by observations using a Bayesian method. This new method is applied to the July 2019 French heatwave. Our results show that<br>both the probability and the intensity of that event have increased significantly in response to human influence.<br>Remarkably, we find that the heat wave considered might not have been possible without climate change. Our<br>results also suggest that combining model data with observations can improve the description of hot temperature<br>distribution.</p>


2020 ◽  
Author(s):  
Thomas Rackow ◽  
Sergey Danilov ◽  
Helge F. Goessling ◽  
Hartmut H. Hellmer ◽  
Dmitry V. Sein ◽  
...  

<p>Despite ongoing global warming and strong sea ice decline in the Arctic, the sea ice extent around the Antarctic continent has not declined during the satellite era since 1979. This is in stark contrast to existing climate models that tend to show a strong negative sea ice trend for the same period; hence the confidence in projected Antarctic sea-ice changes is considered to be low. In the years since 2016, there has been significantly lower Antarctic sea ice extent, which some consider a sign of imminent change; however, others have argued that sea ice extent is expected to regress to the weak decadal trend in the near future.</p><p>In this presentation, we show results from climate change projections with a new climate model that allows the simulation of mesoscale eddies in dynamically active ocean regions in a computationally efficient way. We find that the high-resolution configuration (HR) favours periods of stable Antarctic sea ice extent in September as observed over the satellite era. Sea ice is not projected to decline well into the 21<sup>st</sup> century in the HR simulations, which is similar to the delaying effect of, e.g., added glacial melt water in recent studies. The HR ocean configurations simulate an ocean heat transport that responds differently to global warming and is more efficient at moderating the anthropogenic warming of the Southern Ocean. As a consequence, decrease of Antarctic sea ice extent is significantly delayed, in contrast to what existing coarser-resolution climate models predict.</p><p>Other explanations why current models simulate a non-observed decline of Antarctic sea-ice have been put forward, including the choice of included sea ice physics and underestimated simulated trends in westerly winds. Our results provide an alternative mechanism that might be strong enough to explain the gap between modeled and observed trends alone.</p>


2014 ◽  
Vol 95 (9) ◽  
pp. 1329-1334 ◽  
Author(s):  
Joao Teixeira ◽  
Duane Waliser ◽  
Robert Ferraro ◽  
Peter Gleckler ◽  
Tsengdar Lee ◽  
...  

The objective of the Observations for Model Intercomparison Projects (Obs4MIPs) is to provide observational data to the climate science community, which is analogous (in terms of variables, temporal and spatial frequency, and periods) to output from the 5th phase of the World Climate Research Programme's (WCRP) Coupled Model Intercomparison Project (CMIP5) climate model simulations. The essential aspect of the Obs4MIPs methodology is that it strictly follows the CMIP5 protocol document when selecting the observational datasets. Obs4MIPs also provides documentation that describes aspects of the observational data (e.g., data origin, instrument overview, uncertainty estimates) that are of particular relevance to scientists involved in climate model evaluation and analysis. In this paper, we focus on the activities related to the initial set of satellite observations, which are being carried out in close coordination with CMIP5 and directly engage NASA's observational (e.g., mission and instrument) science teams. Having launched Obs4MIPs with these datasets, a broader effort is also briefly discussed, striving to engage other agencies and experts who maintain datasets, including reanalysis, which can be directly used to evaluate climate models. Different strategies for using satellite observations to evaluate climate models are also briefly summarized.


2005 ◽  
Vol 2 (3) ◽  
pp. 165-246 ◽  
Author(s):  
S. M. Griffies ◽  
A. Gnanadesikan ◽  
K. W. Dixon ◽  
J. P. Dunne ◽  
R. Gerdes ◽  
...  

Abstract. This paper summarizes the formulation of the ocean component to the Geophysical Fluid Dynamics Laboratory's (GFDL) coupled climate model used for the 4th IPCC Assessment (AR4) of global climate change. In particular, it reviews elements of ocean climate models and how they are pieced together for use in a state-of-the-art coupled model. Novel issues are also highlighted, with particular attention given to sensitivity of the coupled simulation to physical parameterizations and numerical methods. Features of the model described here include the following: (1) tripolar grid to resolve the Arctic Ocean without polar filtering, (2) partial bottom step representation of topography to better represent topographically influenced advective and wave processes, (3) more accurate equation of state, (4) three-dimensional flux limited tracer advection to reduce overshoots and undershoots, (5) incorporation of regional climatological variability in shortwave penetration, (6) neutral physics parameterization for representation of the pathways of tracer transport, (7) staggered time stepping for tracer conservation and numerical efficiency, (8) anisotropic horizontal viscosities for representation of equatorial currents, (9) parameterization of exchange with marginal seas, (10) incorporation of a free surface that accomodates a dynamic ice model and wave propagation, (11) transport of water across the ocean free surface to eliminate unphysical "virtual tracer flux" methods, (12) parameterization of tidal mixing on continental shelves.


2021 ◽  
Author(s):  
Stephanie Hay ◽  
Paul Kusnher

<p>Antarctic sea ice has gradually increased in extent over the forty-year-long satellite record, in contrast with the clear decrease in sea-ice extent seen in the Arctic over the same time period. However, state-of-the-art climate models ubiquitously project Antarctic sea-ice to decrease over the coming century, much as they do for Arctic sea-ice. Several recent years have also seen record low Antarctic sea-ice. It is therefore of interest to understand what the climate response to Antarctic sea-ice loss will be. </p><p>We have carried out new fully coupled climate model simulations to assess the response to sea-ice loss in either hemisphere separately or coincidentally under different albedo parameter settings to determine the relative importance of each. By perturbing the albedo of the snow overlying the sea ice and the albedo of the bare sea ice, we obtain a suite of simulations to assess the linearity and additivity of sea-ice loss. We find the response to sea-ice loss in each hemisphere exhibits a high degree of additivity, and can simply be decomposed into responses due to loss in each hemisphere separately. We find that the response to Antarctic sea-ice loss exceeds that of Arctic sea-ice loss in the tropics, and that Antarctic sea-ice loss leads to statistically significant Arctic warming, while the opposite is not true.</p><p>With these new simulations and one in which CO<sub>2</sub> is instantaneously doubled , we can further characterize the response to sea-ice loss from each hemisphere using an extension to classical pattern scaling that includes three controlling parameters. This allows us to simultaneously compute the sensitivity patterns to Arctic sea-ice loss, Antarctic sea-ice loss, and to tropical warming. The statistically significant response to Antarctic sea-ice loss in the Northern Hemisphere extratropics is found to be mediated by tropical warming and small amounts of Arctic sea-ice loss.</p>


2015 ◽  
Vol 28 (23) ◽  
pp. 9105-9120 ◽  
Author(s):  
Clara Orbe ◽  
Paul A. Newman ◽  
Darryn W. Waugh ◽  
Mark Holzer ◽  
Luke D. Oman ◽  
...  

Abstract Future changes in transport from Northern Hemisphere (NH) midlatitudes into the Arctic are examined using rigorously defined air-mass fractions that partition air in the Arctic according to where it last had contact with the planetary boundary layer (PBL). Boreal winter (December–February) and summer (June–August) air-mass fraction climatologies are calculated for the modeled climate of the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) forced with the end-of-twenty-first century greenhouse gases and ozone-depleting substances. The modeled projections indicate that the fraction of air in the Arctic that last contacted the PBL over NH midlatitudes (or air of “midlatitude origin”) will increase by about 10% in both winter and summer. The projected increases during winter are largest in the upper and middle Arctic troposphere, where they reflect an upward and poleward shift in the transient eddy meridional wind, a robust dynamical response among comprehensive climate models. The boreal winter response is dominated by (~5%–10%) increases in the air-mass fractions originating over the eastern Pacific and the Atlantic, while the response in boreal summer mainly reflects (~5%) increases in air of Asian and North American origin. The results herein suggest that future changes in transport from midlatitudes may impact the composition—and, hence, radiative budget—in the Arctic, independent of changes in emissions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
G. Myhre ◽  
K. Alterskjær ◽  
C. W. Stjern ◽  
Ø. Hodnebrog ◽  
L. Marelle ◽  
...  

Abstract The intensity of the heaviest extreme precipitation events is known to increase with global warming. How often such events occur in a warmer world is however less well established, and the combined effect of changes in frequency and intensity on the total amount of rain falling as extreme precipitation is much less explored, in spite of potentially large societal impacts. Here, we employ observations and climate model simulations to document strong increases in the frequencies of extreme precipitation events occurring on decadal timescales. Based on observations we find that the total precipitation from these intense events almost doubles per degree of warming, mainly due to changes in frequency, while the intensity changes are relatively weak, in accordance to previous studies. This shift towards stronger total precipitation from extreme events is seen in observations and climate models, and increases with the strength – and hence the rareness – of the event. Based on these results, we project that if historical trends continue, the most intense precipitation events observed today are likely to almost double in occurrence for each degree of further global warming. Changes to extreme precipitation of this magnitude are dramatically stronger than the more widely communicated changes to global mean precipitation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yixuan Shen ◽  
Yuan Sun ◽  
Zhong Zhong ◽  
Tim Li

The capability to reproduce tropical cyclones (TCs) realistically is important for climate models. A recent study proposed a method for quantitative evaluation of climate model simulations of TC track characteristics in a specific basin, which can be used to rank multiple climate models based on their performance. As an extension of this method, we propose a more comprehensive method here to evaluate the capability of climate models in simulating multi-faceted characteristics of global TCs. Compared with the original method, the new method considers the capability of climate models in simulating not only TC tracks but also TC intensity and frequency. Moreover, the new method is applicable to the global domain. In this study, we apply this method to evaluate the performance of eight climate models that participated in phase 5 of the Coupled Model Intercomparison Project. It is found that, for the overall performance of global TC simulations, the CSIRO Mk3.6.0 model performs the best, followed by GFDL CM3, MPI-ESM-LR, and MRI-CGCM3 models. Moreover, the capability of each of these models in simulating global TCs differs substantially over different ocean basins.


2022 ◽  
Author(s):  
Lander Crespo

Abstract The Atlantic Niño is one of the most important tropical patterns of interannual climate variability, with major regional and global impacts. How global warming will influence the Atlantic Niño has been hardly explored, because of large climate model errors. We show for the first time that the state-of-the-art climate models robustly predict that equatorial Atlantic Niño variability will weaken in response to global warming. This is primarily because subsurface and surface temperature variations decouple as the upper equatorial Atlantic Ocean warms. The weakening is predicted by most (>80%) models following the highest emission scenarios in the Coupled Model Intercomparison Project Phases 5 and 6 considered here. These indicate a reduction in variability by the end of the century of 12-17%, and as much as 25% when accounting for model errors. Weaker Atlantic Niño variability will have major consequences for global climate and the skill of seasonal predictions.


Sign in / Sign up

Export Citation Format

Share Document