The Changing Character of Twenty-First-Century Precipitation over the Western United States in the Variable-Resolution CESM

2017 ◽  
Vol 30 (18) ◽  
pp. 7555-7575 ◽  
Author(s):  
Xingying Huang ◽  
Paul A. Ullrich

Abstract The changing characters of precipitation frequency and intensity have been comprehensively investigated from the recent historical period to the end of the twenty-first century over the western United States. Variable-resolution Community Earth System Model (VR-CESM) ensemble simulations are applied with a fine grid resolution of ~0.25° over the study area. Simulations are forced with prescribed sea surface temperatures, sea ice extent, and greenhouse gas concentrations from the representative concentration pathway 8.5 (RCP8.5) scenario. VR-CESM is shown to be effective at accurately capturing the spatial patterns of the historical precipitation climatology. The results of VR-CESM output provide significantly regional details with crucial enhancement of precipitation representations over complex terrain. In the Intermountain West and U.S. Southwest, a statistically significant increase in mean precipitation and rainy days through midcentury is observed, although this trend is tempered by the end of the century in response to a decrease in relative humidity. Over the Pacific Northwest, extreme precipitation events are observed to increase significantly as a result of increased cool season integrated vapor transport associated with a moistening of the cool seasons and drying through the warm seasons. In particular, extreme precipitation in this region appears to increase more rapidly than would be predicted by the Clausius–Clapeyron relationship. No clear climate signal emerges in mean precipitation or extreme events in the majority of California, where the precipitation climatology is attributed to large interannual variabilities that are tied closely to ENSO patterns.

2014 ◽  
Vol 53 (2) ◽  
pp. 217-233 ◽  
Author(s):  
Diandong Ren ◽  
Lance M. Leslie ◽  
Mervyn J. Lynch

AbstractChanges in storm-triggered landslide activity for Southern California in a future warming climate are estimated using an advanced, fully three-dimensional, process-based landslide model, the Scalable and Extensible Geofluid Modeling System for landslides (SEGMENT-Landslide). SEGMENT-Landslide is driven by extreme rainfall projections from the Geophysical Fluid Dynamics Laboratory High Resolution Atmospheric Model (GFDL-HIRAM). Landslide changes are derived from GFDL-HIRAM forcing for two periods: 1) the twentieth century (CNTRL) and 2) the twenty-first century under the moderate Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A1B enhanced greenhouse gas emissions scenario (EGHG). Here, differences are calculated in landslide frequency and magnitude between the CNTRL and EGHG projections; kernel density estimation (KDE) is used to determine differences in projected landslide locations. This study also reveals that extreme precipitation events in Southern California are strongly correlated with several climate drivers and that GFDL-HIRAM simulates well the southern (relative to Aleutian synoptic systems) storm tracks in El Niño years and the rare (~27-yr recurrence period) hurricane-landfalling events. GFDL-HIRAM therefore can provide satisfactory projections of the geographical distribution, seasonal cycle, and interannual variability of future extreme precipitation events (>50 mm) that have possible landslide consequences for Southern California. Although relatively infrequent, extreme precipitation events contribute most of the annual total precipitation in Southern California. Two findings of this study have major implications for Southern California. First is a possible increase in landslide frequency and areal distribution during the twenty-first century. Second, the KDE reveals three clusters in both the CNTRL and EGHG model mean scarp positions, with a future eastward (inland) shift of ~0.5° and a northward shift of ~1°. These findings suggest that previously stable areas might become susceptible to storm-triggered landslides in the twenty-first century.


2012 ◽  
Vol 13 (1) ◽  
pp. 366-378 ◽  
Author(s):  
Tyler W. Ruff ◽  
Yochanan Kushnir ◽  
Richard Seager

Abstract The ability of coupled climate models to simulate the patterns of interannual precipitation variability over the western half of the United States and northern Mexico is investigated by applying principal component analysis to observations and model output. Global Precipitation Climatology Centre (GPCC) observations are compared to the pooled twentieth-century warm- and cold-season precipitation averages simulated by five coupled global climate models included in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The pooled model spatial structures (EOFs) closely match those of the GPCC observations for both halves of the year. Additionally, the twenty-first-century model pooled EOFs are almost identical in spatial extent and amplitude to their twentieth-century counterparts. Thus, the spatial characteristics of large-scale precipitation variability in the western United States are not projected to change in the twenty-first century. When global observed and modeled seasonally averaged sea surface temperature anomalies are correlated with the time series corresponding to the three leading EOFs to discern sources of each mode of precipitation variability, a pattern reminiscent of El Niño is found to be the only significant association. The spatial structures of variability also appear independent of the model-predicted precipitation trend over the twenty-first century, indicating that the mechanisms responsible for the trend are different from those associated with interannual variability. The results of this study lend confidence in the pooled model predictions of seasonal precipitation patterns, and they suggest that future changes will primarily result from the contribution of the mean trend over which statistically stationary interannual variability is superimposed.


2012 ◽  
Vol 13 (3) ◽  
pp. 877-894 ◽  
Author(s):  
Kathleen D. Holman ◽  
Stephen J. Vavrus

Abstract Understanding extreme precipitation events in the current and future climate system is an important aspect of climate change for adaptation and mitigation purposes. The current study investigates extreme precipitation events over Madison, Wisconsin, during the late twentieth and late twenty-first centuries using 18 coupled ocean–atmosphere general circulation models that participated in the Coupled Model Intercomparison Project (CMIP3). An increase of ~10% is found in the multimodel average of annual precipitation received in Madison by the end of the twenty-first century, with the largest increases projected to occur during winter [December–February (DJF)] and spring [March–May (MAM)]. It is also found that the observed seasonal cycle of precipitation in Madison is not accurately captured by the models. The multimodel average shows a strong seasonal peak in May, whereas observations peak during midsummer. Model simulations also do not accurately capture the annual cycle of extreme precipitation events in Madison, which also peak in summer. Instead, the timing of model-simulated extreme events exhibits a bimodal distribution that peaks during spring and fall. However, spatial composites of average daily precipitation simulated by GCMs during Madison’s wettest 1% of precipitation events during the twentieth century strongly resemble the spatial pattern produced in observations. The role of specific humidity and vertically integrated moisture flux convergence (MFC) during extreme precipitation events in Madison is investigated in twentieth- and twenty-first-century simulations. Spatial composites of MFC during the wettest 1% of days during the twentieth-century simulations agree well with results from the North American Regional Reanalysis dataset (NARR), suggesting that synoptic-scale dynamics are vital to extreme precipitation events.


2013 ◽  
Vol 26 (12) ◽  
pp. 4231-4243 ◽  
Author(s):  
Michael J. DeFlorio ◽  
David W. Pierce ◽  
Daniel R. Cayan ◽  
Arthur J. Miller

Abstract Water resources and management over the western United States are heavily impacted by both local climate variability and the teleconnected responses of precipitation to the El Niño–Southern Oscillation (ENSO) and Pacific decadal oscillation (PDO). In this work, regional precipitation patterns over the western United States and linkages to ENSO and the PDO are analyzed using output from a Community Climate System Model version 4 (CCSM4) preindustrial control run and observations, with emphasis on extreme precipitation events. CCSM4 produces realistic zonal gradients in precipitation intensity and duration over the western United States, with higher values on the windward side of the Cascade Mountains and Sierra Nevada and lower values on the leeward. Compared to its predecessor CCSM3, CCSM4 shows an improved teleconnected signal of both ENSO and the PDO to large-scale circulation patterns over the Pacific–North America region and also to the spatial pattern and other aspects of western U.S. precipitation. The so-called drizzle problem persists in CCSM4 but is significantly improved compared to CCSM3. In particular, it is found that CCSM4 has substantially less precipitation duration bias than is present in CCSM3. Both the overall and extreme intensity of wintertime precipitation over the western United States show statistically significant linkages with ENSO and PDO in CCSM4. This analysis provides a basis for future studies using greenhouse gas (GHG)-forced CCSM4 runs.


Author(s):  
James Lee Brooks

AbstractThe early part of the twenty-first century saw a revolution in the field of Homeland Security. The 9/11 attacks, shortly followed thereafter by the Anthrax Attacks, served as a wakeup call to the United States and showed the inadequacy of the current state of the nation’s Homeland Security operations. Biodefense, and as a direct result Biosurveillance, changed dramatically after these tragedies, planting the seeds of fear in the minds of Americans. They were shown that not only could the United States be attacked at any time, but the weapon could be an invisible disease-causing agent.


2012 ◽  
Vol 13 (1) ◽  
pp. 47-66 ◽  
Author(s):  
Pavel Ya. Groisman ◽  
Richard W. Knight ◽  
Thomas R. Karl

Abstract In examining intense precipitation over the central United States, the authors consider only days with precipitation when the daily total is above 12.7 mm and focus only on these days and multiday events constructed from such consecutive precipitation days. Analyses show that over the central United States, a statistically significant redistribution in the spectra of intense precipitation days/events during the past decades has occurred. Moderately heavy precipitation events (within a 12.7–25.4 mm day−1 range) became less frequent compared to days and events with precipitation totals above 25.4 mm. During the past 31 yr (compared to the 1948–78 period), significant increases occurred in the frequency of “very heavy” (the daily rain events above 76.2 mm) and extreme precipitation events (defined as daily and multiday rain events with totals above 154.9 mm or 6 in.), with up to 40% increases in the frequency of days and multiday extreme rain events. Tropical cyclones associated with extreme precipitation do not significantly contribute to the changes reported in this study. With time, the internal precipitation structure (e.g., mean and maximum hourly precipitation rates within each preselected range of daily or multiday event totals) did not noticeably change. Several possible causes of observed changes in intense precipitation over the central United States are discussed and/or tested.


Sign in / Sign up

Export Citation Format

Share Document