Distributions of Tropical Precipitation Cluster Power and Their Changes under Global Warming. Part II: Long-Term Time Dependence in Coupled Model Intercomparison Project Phase 5 Models

2017 ◽  
Vol 30 (20) ◽  
pp. 8045-8059 ◽  
Author(s):  
Kevin M. Quinn ◽  
J. David Neelin

Abstract Distributions of precipitation cluster power (latent heat release rate integrated over contiguous precipitating pixels) are examined in 1°–2°-resolution members of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate model ensemble. These approximately reproduce the power-law range and large event cutoff seen in observations and the High Resolution Atmospheric Model (HiRAM) at 0.25°–0.5° in Part I. Under the representative concentration pathway 8.5 (RCP8.5) global warming scenario, the change in the probability of the most intense storm clusters appears in all models and is consistent with HiRAM output, increasing by up to an order of magnitude relative to historical climate. For the three models in the ensemble with continuous time series of high-resolution output, there is substantial variability on when these probability increases for the most powerful storm clusters become detectable, ranging from detectable within the observational period to statistically significant trends emerging only after 2050. A similar analysis of National Centers for Environmental Prediction (NCEP)–U.S. Department of Energy (DOE) AMIP-II reanalysis and Special Sensor Microwave Imager and Imager/Sounder (SSM/I and SSMIS) rain-rate retrievals in the recent observational record does not yield reliable evidence of trends in high power cluster probabilities at this time. However, the results suggest that maintaining a consistent set of overlapping satellite instrumentation with improvements to SSM/I–SSMIS rain-rate retrieval intercalibrations would be useful for detecting trends in this important tail behavior within the next couple of decades.

2017 ◽  
Vol 30 (20) ◽  
pp. 8033-8044 ◽  
Author(s):  
Kevin M. Quinn ◽  
J. David Neelin

Abstract The total amount of precipitation integrated across a precipitation feature (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released (i.e., the power of the disturbance). The probability distribution of cluster power is examined over the tropics using Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite-retrieved rain rates and global climate model output. Observed distributions are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability drops rapidly. After establishing an observational baseline, precipitation from the High Resolution Atmospheric Model (HiRAM) at two horizontal grid spacings (roughly 0.5° and 0.25°) is compared. When low rain rates are excluded by choosing a minimum rain-rate threshold in defining clusters, the model accurately reproduces observed cluster power statistics at both resolutions. Middle and end-of-century cluster power distributions are investigated in HiRAM in simulations with prescribed sea surface temperatures and greenhouse gas concentrations from a “business as usual” global warming scenario. The probability of high cluster power events increases strongly by end of century, exceeding a factor of 10 for the highest power events for which statistics can be computed. Clausius–Clapeyron scaling accounts for only a fraction of the increased probability of high cluster power events.


2020 ◽  
Author(s):  
June-Yi Lee ◽  
Kyung-Sook Yun ◽  
Arjun Babu ◽  
Young-Min Yang ◽  
Eui-Seok Chung ◽  
...  

<p><span>The Coupled Model Intercomparison Project Phase 5 (CMIP5) models have showed substantial inter-model spread in estimating annual global-mean precipitation change per one-degree greenhouse-gas-induced warming (precipitation sensitivity), ranging from -4.5</span><span>–4.2</span><span>%</span><sup><span>o</span></sup><span>C<sup>-1</sup>in the Representative Concentration Pathway (RCP) 2.6, the lowest emission scenario, to 0.2–4.0</span><span>%</span><sup><span>o</span></sup><span>C<sup>-1</sup>in the RCP 8.5, the highest emission scenario. The observed-based estimations in the global-mean land precipitation sensitivity during last few decades even show much larger spread due to the considerable natural interdecadal variability, role of anthropogenic aerosol forcing, and uncertainties in observation. This study tackles to better quantify and constrain global land precipitation change in response to global warming by analyzing the new range of Shared Socio-economic Pathway (SSP) scenarios in the </span><span>Coupled Model Intercomparison Project Phase 6 (CMIP6) compared with RCP scenarios in the CMIP5. We show that the range of projected change in annual global-mean land (ocean) precipitation by the end of the 21<sup>st</sup>century relative to the recent past (1995-2014) in the 23 CMIP6 models is over 50% (20%) larger than that in corresponding scenarios of the 40 CMIP5 models. The estimated ranges of precipitation sensitivity in four Tier-1 SSPs are also larger than those in corresponding CMIP5 RCPs. The large increase in projected precipitation change in the highest quartile over ocean is mainly due to the increased number of high equilibrium climate sensitivity (ECS) models in CMIP6 compared to CMIP5, but not over land due to different response of thermodynamic moisture convergence and dynamic processes to global warming. We further discuss key challenges in constraining future precipitation change and source of uncertainties in land precipitation change.</span></p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yohei Yamada ◽  
Chihiro Kodama ◽  
Masaki Satoh ◽  
Masato Sugi ◽  
Malcolm J. Roberts ◽  
...  

AbstractPrevious projections of the frequency of tropical cyclone genesis due to global warming, even in terms of sign of the change, depends on the chosen model simulation. Here, we systematically examine projected changes in tropical cyclones using six global atmospheric models with medium-to-high horizontal resolutions included in the sixth phase of the Coupled Model Intercomparison Project/High-Resolution Model Intercomparison Project. Changes in the frequency of tropical cyclone genesis could be broken down into the contributions from (i) the tropical cyclone seed, a depression having a closed contour of sea level pressure with a warm core and (ii) the survival rate, the ratio of the frequency of tropical cyclone genesis to that of tropical cyclone seeds. The multi-model ensemble mean indicates that tropical cyclone genesis frequencies are significantly decreased during the period 1990–2049, which is attributable to changes in tropical cyclone seeds. Analysis of the individual models shows that although most models project a more or less decreasing trend in tropical cyclone genesis frequencies and seeds, the survival rate also contributes to the result in some models. The present study indicates the usefulness of decomposition into the frequency of the tropical cyclone seeds and the survival rate to understand the cause of uncertainty in projected frequencies of tropical cyclone genesis.


2005 ◽  
Vol 18 (7) ◽  
pp. 1016-1031 ◽  
Author(s):  
Kenneth E. Kunkel ◽  
Xin-Zhong Liang

Abstract A diagnostic analysis of relationships between central U.S. climate characteristics and various flow and scalar fields was used to evaluate nine global coupled ocean–atmosphere general circulation models (CGCMs) participating in the Coupled Model Intercomparison Project (CMIP). To facilitate identification of physical mechanisms causing biases, data from 21 models participating in the Atmospheric Model Intercomparison Project (AMIP) were also used for certain key analyses. Most models reproduce basic features of the circulation, temperature, and precipitation patterns in the central United States, although no model exhibits small differences from the observationally based data for all characteristics in all seasons. Model ensemble means generally produce better agreement with the observationally based data than any single model. A fall precipitation deficiency, found in all AMIP and CMIP models except the third-generation Hadley Centre CGCM (HadCM3), appears to be related in part to slight biases in the flow on the western flank of the Atlantic subtropical ridge. In the model mean, the ridge at 850 hPa is displaced slightly to the north and to the west, resulting in weaker southerly flow into the central United States. The CMIP doubled-CO2 transient runs show warming (1°–5°C) for all models and seasons and variable precipitation changes over the central United States. Temperature (precipitation) changes are larger (mostly less) than the variations that are observed in the twentieth century and the model variations in the control simulations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yukiko Hirabayashi ◽  
Masahiro Tanoue ◽  
Orie Sasaki ◽  
Xudong Zhou ◽  
Dai Yamazaki

AbstractEstimates of future flood risk rely on projections from climate models. The relatively few climate models used to analyze future flood risk cannot easily quantify of their associated uncertainties. In this study, we demonstrated that the projected fluvial flood changes estimated by a new generation of climate models, the collectively known as Coupled Model Intercomparison Project Phase 6 (CMIP6), are similar to those estimated by CMIP5. The spatial patterns of the multi-model median signs of change (+ or −) were also very consistent, implying greater confidence in the projections. The model spread changed little over the course of model development, suggesting irreducibility of the model spread due to internal climate variability, and the consistent projections of models from the same institute suggest the potential to reduce uncertainties caused by model differences. Potential global exposure to flooding is projected to be proportional to the degree of warming, and a greater threat is anticipated as populations increase, demonstrating the need for immediate decisions.


2020 ◽  
Author(s):  
Christopher J. Smith ◽  
Ryan J. Kramer ◽  
Adriana Sima

Abstract. We present top-of-atmosphere and surface radiative kernels based on the atmospheric component (GA7.1) of the HadGEM3 general circulation model developed by the UK Met Office. We show that the utility of radiative kernels for forcing adjustments in idealised CO2 perturbation experiments is most appropriate where there is sufficiently high resolution in the stratosphere in both the target climate model and the radiative kernel. This is because stratospheric cooling to a CO2 perturbation continues to increase with height, and low-resolution or low-top kernels or climate model output are unable to fully resolve the full stratospheric temperature adjustment. In the sixth phase of the Coupled Model Intercomparison Project (CMIP6), standard atmospheric model data is available up to 1 hPa on 19 pressure levels, which is a substantial advantage compared to CMIP5. We show in the IPSL-CM6A-LR model where a full set of climate diagnostics are available that the HadGEM3-GA7.1 kernel exhibits linear behaviour and the residual error term is small. From kernels available in the literature we recommend three kernels for adjustment calculations to CO2 and well-mixed greenhouse gas perturbations based on their stratospheric resolution: HadGEM3-GA7.1, ECMWF-Oslo, and ECHAM6. The HadGEM3-GA7.1 radiative kernels are available at https://doi.org/10.5281/zenodo.3594673 (Smith, 2019).


2015 ◽  
Vol 8 (12) ◽  
pp. 10539-10583 ◽  
Author(s):  
V. Eyring ◽  
S. Bony ◽  
G. A. Meehl ◽  
C. Senior ◽  
B. Stevens ◽  
...  

Abstract. By coordinating the design and distribution of global climate model simulations of the past, current and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima experiments) and the CMIP Historical Simulation (1850–near-present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP, (2) common standards, coordination, infrastructure and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble, and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and the CMIP Historical Simulation to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP Historical Simulation, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. The participation in the CMIP6-Endorsed MIPs will be at the discretion of the modelling groups, and will depend on scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: (i) how does the Earth system respond to forcing?, (ii) what are the origins and consequences of systematic model biases?, and (iii) how can we assess future climate changes given climate variability, predictability and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and the CMIP6 Historical Simulation, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.


2021 ◽  
Author(s):  
Fredrik Boberg ◽  
Ruth Mottram ◽  
Nicolaj Hansen ◽  
Shuting Yang ◽  
Peter L. Langen

Abstract. The future rates of ice sheet melt in Greenland and Antarctica are an important factor when making estimates of the likely rate of sea level rise. Global climate models that took part in the fifth Coupled Model Intercomparison Project (CMIP5) have generally been unable to replicate observed rates of ice sheet melt. With the advent of the sixth Coupled Model Intercomparison Project (CMIP6), with a general increase in the equilibrium climate sensitivity, we here compare two versions of the global climate model EC-Earth using the regional climate model HIRHAM5 downscaling EC-Earth for Greenland and Antarctica. One version (v2) of EC-Earth is taken from CMIP5 for the high-emissions Representative Concentration Pathways (RCP8.5) scenario and the other (v3) from CMIP6 for the comparable high-emissions Shared Socioeconomic Pathways (SSP5-8.5) scenario). For Greenland, we downscale the two versions of EC-Earth for the historical period 1991–2010 and for the scenario period 2081–2100. For Antarctica, the periods are 1971–2000 and 2071–2100, respectively. For the Greenland Ice Sheet, we find that the mean change in temperature is 5.9 °C when downscaling EC-Earth v2 and 6.8 °C when downscaling EC-Earth v3. Corresponding values for Antarctica are 4.1 °C for v2 and 4.8 °C for v3. The mean change in surface mass balance at the end of the century under these high emissions scenarios is found to be −210 Gt yr−1 (v2) and −1150 Gt yr−1 (v3) for Greenland and 420 Gt yr−1 (v2) and 80 Gt yr−1 (v3) for Antarctica. These distinct differences in temperature change and particularly surface mass balance change are a result of the higher equilibrium climate sensitivity in EC-Earth v3 (4.3 K) compared with 3.3 K in EC-Earth v2 and the differences in greenhouse gas concentrations between the RCP8.5 and the SSP5-8.5 scenarios.


2020 ◽  
Author(s):  
Yohei Yamada ◽  
Chihiro Kodama ◽  
Masaki Satoh ◽  
Masato Sugi ◽  
Malcolm J Roberts ◽  
...  

Abstract Previous projections of the frequency of tropical cyclone genesis due to global warming, even in terms of sign of the change, depends on the chosen model simulation. Here, we systematically examine projected changes in tropical cyclones using six global atmospheric models with medium-to-high horizontal resolutions included in the sixth phase of the Coupled Model Intercomparison Project/High-Resolution Model Intercomparison Project. Changes in the frequency of tropical cyclone genesis could be broken down into the contributions from (i) the tropical cyclone seed, a depression having a closed contour of sea level pressure with a warm core and (ii) the survival rate, the ratio of the frequency of tropical cyclone genesis to that of tropical cyclone seeds. The multi-model ensemble mean indicates that tropical cyclone genesis frequencies are significantly decreased during the period 1990–2049, which is attributable to changes in tropical cyclone seeds. Analysis of the individual models shows that although most models project a more or less decreasing trend in tropical cyclone genesis frequencies and seeds, the survival rate also contributes to the result in some models. The present study indicates the usefulness of decomposition into the frequency of the tropical cyclone seeds and the survival rate to understand the cause of uncertainty in projected frequencies of tropical cyclone genesis.


2014 ◽  
Vol 27 (22) ◽  
pp. 8372-8383 ◽  
Author(s):  
Angeline G. Pendergrass ◽  
Dennis L. Hartmann

Abstract Changes in the frequency and intensity of rainfall are an important potential impact of climate change. Two modes of change, a shift and an increase, are applied to simulations of global warming with models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The response to CO2 doubling in the multimodel mean of CMIP5 daily rainfall is characterized by an increase of 1% K−1 at all rain rates and a shift to higher rain rates of 3.3% K−1. In addition to these increase and shift modes of change, some models also show a substantial increase in rainfall at the highest rain rates called the extreme mode of response to warming. In some models, this extreme mode can be shown to be associated with increases in grid-scale condensation or gridpoint storms.


Sign in / Sign up

Export Citation Format

Share Document