scholarly journals Evolution of the Atlantic Multidecadal Variability in a Model with an Improved North Atlantic Current

2017 ◽  
Vol 30 (14) ◽  
pp. 5491-5512 ◽  
Author(s):  
Annika Drews ◽  
Richard J. Greatbatch

This article investigates the dynamics and temporal evolution of the Atlantic multidecadal variability (AMV) in a coupled climate model. The model contains a correction to the North Atlantic flow field to improve the path of the North Atlantic Current, thereby alleviating the surface cold bias, a common problem with climate models, and offering a unique opportunity to study the AMV in a model. Changes in greenhouse gas forcing or aerosol loading are not considered. A striking feature of the results is the contrast between the western and eastern sides of the subpolar gyre in the model. On the western side, anomalous heat supply by the ocean plays a major role, with most of this heat being given up to the atmosphere in the warm phase, largely symmetrically about the time of the AMV maximum. By contrast, on the eastern side, the ocean anomalously gains heat from the atmosphere, with relatively little role for ocean heat supply in the years before the AMV maximum. Thereafter, the balance changes with heat now being anomalously removed from the eastern side by the ocean, leading to a reduced ocean heat content, behavior associated with the establishment of an intergyre gyre at the time of the AMV maximum. In the warm phase, melting sea ice leads to a freshening of surface waters northeast of Greenland that travel southward into the Irminger and Labrador Seas, shutting down convection and terminating the AMV warm phase.

2018 ◽  
Vol 99 (2) ◽  
pp. 415-425 ◽  
Author(s):  
R. T. Sutton ◽  
G. D. McCarthy ◽  
J. Robson ◽  
B. Sinha ◽  
A. T. Archibald ◽  
...  

Abstract Atlantic multidecadal variability (AMV) is the term used to describe the pattern of variability in North Atlantic sea surface temperatures (SSTs) that is characterized by decades of basinwide warm or cool anomalies, relative to the global mean. AMV has been associated with numerous climate impacts in many regions of the world including decadal variations in temperature and rainfall patterns, hurricane activity, and sea level changes. Given its importance, understanding the physical processes that drive AMV and the extent to which its evolution is predictable is a key challenge in climate science. A leading hypothesis is that natural variations in ocean circulation control changes in ocean heat content and consequently AMV phases. However, this view has been challenged recently by claims that changing natural and anthropogenic radiative forcings are critical drivers of AMV. Others have argued that changes in ocean circulation are not required. Here, we review the leading hypotheses and mechanisms for AMV and discuss the key debates. In particular, we highlight the need for a holistic understanding of AMV. This perspective is a key motivation for a major new U.K. research program: the North Atlantic Climate System Integrated Study (ACSIS), which brings together seven of the United Kingdom’s leading environmental research institutes to enable a broad spectrum approach to the challenges of AMV. ACSIS will deliver the first fully integrated assessment of recent decadal changes in the North Atlantic, will investigate the attribution of these changes to their proximal and ultimate causes, and will assess the potential to predict future changes.


2020 ◽  
Author(s):  
Loïc Houpert ◽  
Stuart A. Cunningham ◽  
Neil J Fraser ◽  
Clare Johnson ◽  
N. Penny Holliday ◽  
...  

2020 ◽  
Author(s):  
Pascale Lherminier ◽  
Herlé Mercier ◽  
Fiz F. Perez ◽  
Marcos Fontela

<p><span>According to the subpolar AMOC index built from ARGO and altimetry, the AMOC amplitude across the OVIDE section (from Greenland to Portugal) was similar to that of the mid-1990s between 2014 and 2017, i.e. 4-5 Sv above the level of the 2000s. It then returned to average values in 2018. The same index computed independently from the biennial summer cruises over 2002-2018 confirms this statement. Interestingly, despite the concomitant cold and fresh anomaly in the subpolar Atlantic, the heat flux across OVIDE remains correlated with the AMOC amplitude. This can be explained by the paths taken by the North Atlantic Current and the transport anomalies in the subarctic front. In 2014, the OVIDE section was complemented by a section from Greenland to Newfoundland (GA01), showing how the water of the lower limb of the AMOC was densified by deep convection in the Labrador Sea. The spatial patterns of volume, heat, salt and oxygen transport anomalies after 2014 will be discussed at the light of the 2000s average.</span></p>


2019 ◽  
Vol 47 (2) ◽  
pp. 246-265
Author(s):  
A. K. Ambrosimov ◽  
N. A. Diansky ◽  
A. A. Kluvitkin ◽  
V. A. Melnikov

Based on time series of near-bottom current velocities and temperatures obtained in the period June, 2016 to July, 2017, at three points in the Atlantic Subarctic Front, along with the use of multi-year (since 1993 up to now) satellite ocean surface sounding data, multi-scale fluctuations of ocean surface and near-bottom flows over the western and eastern flanks of the Reykjanes ridge, as well as near Hatton Rise, on the Rokoll plateau, are studied. Hydrological profiles were carried out from the ocean surface to the bottom with readings every 10 m, when setting and retrieving the buoy stations. Using data from the Bank of hydrological stations (WOD13), SST satellite arrays (Pathfinder), long-term sea level and geostrophic velocities time series (AVISO), and bottom topography (model ETOPO-1), features of longterm cyclical fluctuations of SST, sea level, geostrophic currents on the ocean surface were defined in the sub-polar North Atlantic. It is shown that, in accordance with the large-scale thermohaline structure of the Subarctic front, two branches of the North Atlantic Current are detected on the ocean surface.One is directed from the Hatton towards the Icelandic-Faroese Rise, and the other – alomg the western flank of the Reykjanes Ridge toward Iceland. For the first branch, which is the main continuation of the North Atlantic Current, the average (for 25 years) water drift at a speed of 9.1±0.1 cm/s is determined to the northeast. The second branch, which forms the eastern part of the Subarctic cyclonic gyre, has the average water drift at a speed of 4.0±0.1 cm/s is directed north-northeast, along the western flank of the Reykjanes Ridge. In the intermediate waters of the frontal zone, an average water flow is observed at a speed of 2.7±0.1 cm/s to the north-northeast, along the eastern slope of the Reykjanes ridge.Due to the multy-scale components of the total variability, the average kinetic energy densities(KED) of total currents (109, 45, 97, (±3) erg/cm3, at station points from east to west) are much greater than the mean drift KED. The near-bottom flows on the Reykjanes ridge flanks are opposite to the direction of the North Atlantic Current. Outside the Subarctic gyre, the direction of average transport is maintained from the ocean surface to the bottom. The average (per year) KED of near-bottom currents are 31, 143, 27 (±3 erg/cm3), for three stations from east to west, respectively. In the intermediate waters of the frontal zone, above the eastern slope of the Reykjanes Ridge, there is a powerful reverse (relative to the North Atlantic Current) near-bottom water flow to the south-west, with a high average speed of ~ 15 cm/s. The KED of the currents during the year varies widely from zero to ~ 600 erg/cm3. The overall variability is due to cyclical variations and intermittency (“flashes”) of currents. Perennial cycles, seasonal variations, synoptic fluctuations with periods in the range of 30–300 days, as well as inertial oscillations and semi-diurnal tidal waves are distinguished. The intermittency of oscillations is partly due to changes in low-frequency flows, which can lead to a dopler frequency shift in the cyclic components of the spectrum. The amplitude of temperature fluctuations in the bottom layer for the year was (0.07–0.10) ± 0.01°C by the standard deviation. The seasonal changes of the bottom temperature are not detected. However, a linear trend with a warming of ~ (0.10–0.15) ± 0.01°С per year is noticeable.


1990 ◽  
Vol 14 ◽  
pp. 345-345
Author(s):  
Dean R. Lindstrom

A numerical model which simultaneously computes grounded and ice-shelf flow was used to develop an equilibrium ice-sheet–ice-shelf system over Eurasia and the Arctic region. Present-day net accumulation rates and mean annual and July temperature values were used as base values for climatic variable specifications. The values were adjusted during the model run to account for changes in the ice-surface elevation and atmospheric CO2 concentration. The model-determined equilibrium ice-sheet configuration was used as input for additional runs to observe what effect removing the Arctic ice shelf and increasing the CO2 concentration from glacial to present-day values has on the ice sheet.At equilibrium, an ice shelf formed over the Arctic Ocean and Greenland and Norwegian seas. Ice easily grounded over the Barents, Kara, East Siberian, and Laptev seas. The grounded ice-sheet profile differs in Europe from most glacial geological reconstructions because the North Atlantic Current effect was not removed from the climatic adjustments. As a result, ice did not extend over the North Sea and onto the British Isles because of the North Atlantic Current's warming effect. Also, the precipitation rate over Europe was too high because of the moisture source the North Atlantic Current carries, and the ice sheet expanded beyond the field-determined ice-sheet margins in the region south-east of Finland.Removing most of the Arctic region's ice-shelf cover had little effect on the grounded ice sheet unless it rested upon a deformable sediment layer. The ice sheet was able to collapse within 10 000 years, however, when the CO2 concentration was gradually increased toward present-day values using the Vostok ice core's CO2 record from the last 18 000 years. Initially, most mass loss resulted from surface melting. Once the thickness decreased enough over some regions for the grounded ice to become ungrounded, however, most mass loss resulted from the ice shelf rapidly transporting the ice to the ice-shelf front and discharging it to the sea.


Sign in / Sign up

Export Citation Format

Share Document