scholarly journals The Impacts of Atmospheric and Surface Parameters on Long-Term Variations in the Planetary Albedo

2018 ◽  
Vol 31 (21) ◽  
pp. 8705-8718 ◽  
Author(s):  
Bida Jian ◽  
Jiming Li ◽  
Guoyin Wang ◽  
Yongli He ◽  
Ying Han ◽  
...  

Planetary albedo (PA; shortwave broadband albedo) and its long-term variations, which are controlled in a complex way by various atmospheric and surface properties, play a key role in controlling the global and regional energy budget. This study investigates the contributions of different atmospheric and surface properties to the long-term variations of PA based on 13 years (2003–15) of albedo, cloud, and ice coverage datasets from the Clouds and the Earth’s Radiant Energy System (CERES) Single Scanner Footprint edition 4A product, vegetation product from Moderate Resolution Imaging Spectroradiometer (MODIS), and surface albedo product from the Cloud, Albedo, and Radiation dataset, version 2 (CLARA-A2). According to the temporal correlation analysis, statistical results indicate that variations in PA are closely related to the variations of cloud properties (e.g., cloud fraction, ice water path, and liquid water path) and surface parameters (e.g., ice/snow percent coverage and normalized difference vegetation index), but their temporal relationships vary among the different regions. Generally, the stepwise multiple linear regression models can capture the observed PA anomalies for most regions. Based on the contribution calculation, cloud fraction dominates the variability of PA in the mid- and low latitudes while ice/snow percent coverage (or surface albedo) dominates the variability in the mid- and high latitudes. Changes in cloud liquid water path and ice water path are the secondary dominant factor over most regions, whereas change in vegetation cover is the least important factor over land. These results verify the effects of atmospheric and surface factors on planetary albedo changes and thus may be of benefit for improving the parameterization of the PA and determining the climate feedbacks.

2015 ◽  
Vol 54 (8) ◽  
pp. 1809-1825 ◽  
Author(s):  
Yaodeng Chen ◽  
Hongli Wang ◽  
Jinzhong Min ◽  
Xiang-Yu Huang ◽  
Patrick Minnis ◽  
...  

AbstractAnalysis of the cloud components in numerical weather prediction models using advanced data assimilation techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA) system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to assimilate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the impact of cloud information from the previous cycles spun up by the WRF Model.


2020 ◽  
Vol 20 (6) ◽  
pp. 3459-3481 ◽  
Author(s):  
Rosa Gierens ◽  
Stefan Kneifel ◽  
Matthew D. Shupe ◽  
Kerstin Ebell ◽  
Marion Maturilli ◽  
...  

Abstract. Low-level mixed-phase clouds (MPCs) are common in the Arctic. Both local and large-scale phenomena influence the properties and lifetime of MPCs. Arctic fjords are characterized by complex terrain and large variations in surface properties. Yet, not many studies have investigated the impact of local boundary layer dynamics and their relative importance on MPCs in the fjord environment. In this work, we used a combination of ground-based remote sensing instruments, surface meteorological observations, radiosoundings, and reanalysis data to study persistent low-level MPCs at Ny-Ålesund, Svalbard, for a 2.5-year period. Methods to identify the cloud regime, surface coupling, and regional and local wind patterns were developed. We found that persistent low-level MPCs were most common with westerly winds, and the westerly clouds had a higher mean liquid (42 g m−2) and ice water path (16 g m−2) compared to those with easterly winds. The increased height and rarity of persistent MPCs with easterly free-tropospheric winds suggest the island and its orography have an influence on the studied clouds. Seasonal variation in the liquid water path was found to be minimal, although the occurrence of persistent MPCs, their height, and their ice water path all showed notable seasonal dependency. Most of the studied MPCs were decoupled from the surface (63 %–82 % of the time). The coupled clouds had 41 % higher liquid water path than the fully decoupled ones. Local winds in the fjord were related to the frequency of surface coupling, and we propose that katabatic winds from the glaciers in the vicinity of the station may cause clouds to decouple. We concluded that while the regional to large-scale wind direction was important for the persistent MPC occurrence and properties, the local-scale phenomena (local wind patterns in the fjord and surface coupling) also had an influence. Moreover, this suggests that local boundary layer processes should be described in models in order to present low-level MPC properties accurately.


2006 ◽  
Vol 6 (1) ◽  
pp. 1579-1617 ◽  
Author(s):  
J. E. Penner ◽  
J. Quaas ◽  
T. Storelvmo ◽  
T. Takemura ◽  
O. Boucher ◽  
...  

Abstract. Modeled differences in predicted effects are increasingly used to help quantify the uncertainty of these effects. Here, we examine modeled differences in the aerosol indirect effect in a series of experiments that help to quantify how and why model-predicted aerosol indirect forcing varies between models. The experiments start with an experiment in which aerosol concentrations, the parameterization of droplet concentrations and the autoconversion scheme are all specified and end with an experiment that examines the predicted aerosol indirect forcing when only aerosol sources are specified. Although there are large differences in the predicted liquid water path among the models, the predicted aerosol indirect effect for the first experiment is rather similar. Changes to the autoconversion scheme can lead to large changes in the liquid water path of the models and to the response of the liquid water path to changes in aerosols. Nevertheless, these changes do not necessarily lead to large changes in the radiative forcing. The parameterization of cloud fraction within models is not sensitive to the aerosol concentration, and, therefore, the response of the modeled cloud fraction within the present models appears to be smaller than that which would be associated with model ''noise''. The prediction of aerosol concentrations, given a fixed set of sources, leads to some of the largest differences in the predicted aerosol indirect radiative forcing among the models. Thus, this aspect of modeling requires significant improvement in order to improve the prediction of aerosol indirect effects.


2021 ◽  
Author(s):  
Mahnoosh Haghighatnasab ◽  
Johannes Quass

<p>Since increased anthropogenic aerosol result in an enhancement in cloud droplet number concentration, cloud and precipitation process are modified. It is unclear how exactly cloud liquid water path (LWP) and cloud fraction respond to aerosol perturbations. A large volcanic eruption may help to better understand and quantify the cloud response to external perturbations, with a focus on the short-term cloud adjustments . Volcloud is one of the research projects in the Vollmpact collaborative German research unit which aims to the improve understanding of how the climate system responds to volcanic eruptions. This includes skills in satellite remote sensing of atmospheric composition, stratospheric aerosol parameters and clouds as well as in modelling of aerosol microphysical and cloud processes, and in climate modelling. The goal of VolCloud is to understand and quantify the response of clouds to volcanic eruptions and to thereby advance the fundamental understanding of the cloud response to external forcing, particularly aerosol-cloud interactions. In this study we used ICON-NWP atmospheric model at a cloud-system-resolving resolution of 2.5 km horizontally, to simulate the region around the Holuhraun volcano for the duration of one week (1 – 7 September 2014). The pair of simulations, with and without the volcanic aerosol emissions allowed us to assess the simulated effective radiative forcing and its mechanisms as well as its impact on adjustments of cloud liquid water path and cloud fraction to the perturbations of cloud droplet number concentration. In this case studies liquid water path positively correlates with enhanced cloud droplet concentration.</p>


2013 ◽  
Vol 26 (19) ◽  
pp. 7507-7524 ◽  
Author(s):  
Timothy A. Myers ◽  
Joel R. Norris

Abstract Conventional wisdom suggests that subsidence favors the presence of marine stratus and stratocumulus because regions of enhanced boundary layer cloudiness are observed to climatologically co-occur with regions of enhanced subsidence. Here it is argued that the climatological positive correlation between subsidence and cloudiness is not the result of a direct physical mechanism connecting the two. Instead, it arises because enhanced subsidence is typically associated with stronger temperature inversions capping the marine boundary layer, and stronger temperature inversions favor greater cloudiness. Through statistical analysis of satellite cloud data and meteorological reanalyses for the subsidence regime over tropical (30°S–30°N) oceans, it is shown that enhanced subsidence promotes reduced cloudiness for the same value of inversion strength and that a stronger inversion favors greater cloudiness for the same value of subsidence. Using a simple conceptual model, it is argued that enhanced subsidence leads to reduced cloud thickness, liquid water path, and cloud fraction by pushing down the top of the marine boundary layer. Moreover, a stronger inversion reduces entrainment drying and warming, thus leading to a more humid boundary layer and greater cloud thickness, liquid water path, and cloud fraction. These two mechanisms typically oppose each other for geographical and seasonal cloud variability because enhanced subsidence is usually associated with stronger inversions. If global warming results in stronger inversions but weaker subsidence, the two mechanisms could both favor increased subtropical low-level cloudiness.


2006 ◽  
Vol 6 (11) ◽  
pp. 3391-3405 ◽  
Author(s):  
J. E. Penner ◽  
J. Quaas ◽  
T. Storelvmo ◽  
T. Takemura ◽  
O. Boucher ◽  
...  

Abstract. Modeled differences in predicted effects are increasingly used to help quantify the uncertainty of these effects. Here, we examine modeled differences in the aerosol indirect effect in a series of experiments that help to quantify how and why model-predicted aerosol indirect forcing varies between models. The experiments start with an experiment in which aerosol concentrations, the parameterization of droplet concentrations and the autoconversion scheme are all specified and end with an experiment that examines the predicted aerosol indirect forcing when only aerosol sources are specified. Although there are large differences in the predicted liquid water path among the models, the predicted aerosol first indirect effect for the first experiment is rather similar, about −0.6 Wm−2 to −0.7 Wm−2. Changes to the autoconversion scheme can lead to large changes in the liquid water path of the models and to the response of the liquid water path to changes in aerosols. Adding an autoconversion scheme that depends on the droplet concentration caused a larger (negative) change in net outgoing shortwave radiation compared to the 1st indirect effect, and the increase varied from only 22% to more than a factor of three. The change in net shortwave forcing in the models due to varying the autoconversion scheme depends on the liquid water content of the clouds as well as their predicted droplet concentrations, and both increases and decreases in the net shortwave forcing can occur when autoconversion schemes are changed. The parameterization of cloud fraction within models is not sensitive to the aerosol concentration, and, therefore, the response of the modeled cloud fraction within the present models appears to be smaller than that which would be associated with model "noise". The prediction of aerosol concentrations, given a fixed set of sources, leads to some of the largest differences in the predicted aerosol indirect radiative forcing among the models, with values of cloud forcing ranging from −0.3 Wm−2 to −1.4 Wm−2. Thus, this aspect of modeling requires significant improvement in order to improve the prediction of aerosol indirect effects.


2011 ◽  
Vol 11 (6) ◽  
pp. 2893-2901 ◽  
Author(s):  
M. de la Torre Juárez ◽  
A. B. Davis ◽  
E. J. Fetzer

Abstract. Means, standard deviations, homogeneity parameters used in models based on their ratio, and the probability distribution functions (PDFs) of cloud properties from the MODerate resolution Infrared Spectrometer (MODIS) are estimated globally as function of averaging scale varying from 5 to 500 km. The properties – cloud fraction, droplet effective radius, and liquid water path – all matter for cloud-climate uncertainty quantification and reduction efforts. Global means and standard deviations are confirmed to change with scale. For the range of scales considered, global means vary only within 3% for cloud fraction, 7% for liquid water path, and 0.2% for cloud particle effective radius. These scale dependences contribute to the uncertainties in their global budgets. Scale dependence for standard deviations and generalized flatness are compared to predictions for turbulent systems. Analytical expressions are identified that fit best to each observed PDF. While the best analytical PDF fit to each variable differs, all PDFs are well described by log-normal PDFs when the mean is normalized by the standard deviation inside each averaging domain. Importantly, log-normal distributions yield significantly better fits to the observations than gaussians at all scales. This suggests a possible approach for both sub-grid and unified stochastic modeling of these variables at all scales. The results also highlight the need to establish an adequate spatial resolution for two-stream radiative studies of cloud-climate interactions.


2018 ◽  
Vol 11 (1) ◽  
pp. 611-632 ◽  
Author(s):  
Manfred Brath ◽  
Stuart Fox ◽  
Patrick Eriksson ◽  
R. Chawn Harlow ◽  
Martin Burgdorf ◽  
...  

Abstract. A neural-network-based retrieval method to determine the snow ice water path (SIWP), liquid water path (LWP), and integrated water vapor (IWV) from millimeter and submillimeter brightness temperatures, measured by using airborne radiometers (ISMAR and MARSS), is presented. The neural networks were trained by using atmospheric profiles from the ICON numerical weather prediction (NWP) model and by radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS). The basic performance of the retrieval method was analyzed in terms of offset (bias) and the median fractional error (MFE), and the benefit of using submillimeter channels was studied in comparison to pure microwave retrievals. The retrieval is offset-free for SIWP  > 0.01 kg m−2, LWP  > 0.1 kg m−2, and IWV  > 3 kg m−2. The MFE of SIWP decreases from 100 % at SIWP  =  0.01 kg m−2 to 20 % at SIWP  =  1 kg m−2 and the MFE of LWP from 100 % at LWP  = 0.05 kg m−2 to 30 % at LWP  =  1 kg m−2. The MFE of IWV for IWV  > 3 kg m−2 is 5 to 8 %. The SIWP retrieval strongly benefits from submillimeter channels, which reduce the MFE by a factor of 2, compared to pure microwave retrievals. The IWV and the LWP retrievals also benefit from submillimeter channels, albeit to a lesser degree. The retrieval was applied to ISMAR and MARSS brightness temperatures from FAAM flight B897 on 18 March 2015 of a precipitating frontal system west of the coast of Iceland. Considering the given uncertainties, the retrieval is in reasonable agreement with the SIWP, LWP, and IWV values simulated by the ICON NWP model for that flight. A comparison of the retrieved IWV with IWV from 12 dropsonde measurements shows an offset of 0.5 kg m−2 and an RMS difference of 0.8 kg m−2, showing that the retrieval of IWV is highly effective even under cloudy conditions.


2017 ◽  
Vol 74 (11) ◽  
pp. 3703-3724 ◽  
Author(s):  
Olga Henneberg ◽  
Jan Henneberger ◽  
Ulrike Lohmann

Abstract Orographic forcing can stabilize mixed-phase clouds (MPCs), which are thermodynamically unstable owing to the different saturation vapor pressure over liquid water and ice. This study presents simulations of MPCs in orographically complex terrain over the Alpine ridge with the regional model COSMO using a horizontal resolution of 1 km. Two case studies provide insights into the formation of Alpine MPCs. Trajectory studies show that the majority of the air parcels lifted by more than 600 m are predominantly in the liquid phase even if they originate from glaciated clouds. The interplay between lifted and advected air parcels is crucial for the occurrence of MPCs. Within a sensitivity study, the orography is reduced to 80%, which changed both the total barrier height and steepness. The changes in total water path (TWP), liquid water path (LWP), and ice water path (IWP) vary in sign and strength as the affected precipitation does. LWP can experience changes up to 500% resulting in a transformation from an ice-dominated MPC to a liquid-dominated MPC. In further simulations with increased steepness and maintained surface height at Jungfraujoch, TWP experiences a reduction between 25% and 40% during different time periods, which results in reduced precipitation by around 30%. An accurate representation of the steepness and the height of mountains in models is crucial for the formation and development of MPCs.


Sign in / Sign up

Export Citation Format

Share Document