Soil Moisture Variability Intensifies and Prolongs Eastern Amazon Temperature and Carbon Cycle Response to El Niño–Southern Oscillation

2019 ◽  
Vol 32 (4) ◽  
pp. 1273-1292 ◽  
Author(s):  
Paul A. Levine ◽  
James T. Randerson ◽  
Yang Chen ◽  
Michael S. Pritchard ◽  
Min Xu ◽  
...  

El Niño–Southern Oscillation (ENSO) is an important driver of climate and carbon cycle variability in the Amazon. Sea surface temperature (SST) anomalies in the equatorial Pacific drive teleconnections with temperature directly through changes in atmospheric circulation. These circulation changes also impact precipitation and, consequently, soil moisture, enabling additional indirect effects on temperature through land–atmosphere coupling. To separate the direct influence of ENSO SST anomalies from the indirect effects of soil moisture, a mechanism-denial experiment was performed to decouple their variability in the Energy Exascale Earth System Model (E3SM) forced with observed SSTs from 1982 to 2016. Soil moisture variability was found to amplify and extend the effects of SST forcing on eastern Amazon temperature and carbon fluxes in E3SM. During the wet season, the direct, circulation-driven effect of ENSO SST anomalies dominated temperature and carbon cycle variability throughout the Amazon. During the following dry season, after ENSO SST anomalies had dissipated, soil moisture variability became the dominant driver in the east, explaining 67%–82% of the temperature difference between El Niño and La Niña years, and 85%–91% of the difference in carbon fluxes. These results highlight the need to consider the interdependence between temperature and hydrology when attributing the relative contributions of these factors to interannual variability in the terrestrial carbon cycle. Specifically, when offline models are forced with observations or reanalysis, the contribution of temperature may be overestimated when its own variability is modulated by hydrology via land–atmosphere coupling.

2019 ◽  
Vol 11 (1) ◽  
pp. 95 ◽  
Author(s):  
Maria Piles ◽  
Joaquim Ballabrera-Poy ◽  
Joaquín Muñoz-Sabater

Soil moisture observations are expected to play an important role in monitoring global climate trends. However, measuring soil moisture is challenging because of its high spatial and temporal variability. Point-scale in-situ measurements are scarce and, excluding model-based estimates, remote sensing remains the only practical way to observe soil moisture at a global scale. The ESA-led Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, measures the Earth’s surface natural emissivity at L-band and provides highly accurate soil moisture information with a 3-day revisiting time. Using the first six full annual cycles of SMOS measurements (June 2010–June 2016), this study investigates the temporal variability of global surface soil moisture. The soil moisture time series are decomposed into a linear trend, interannual, seasonal, and high-frequency residual (i.e., subseasonal) components. The relative distribution of soil moisture variance among its temporal components is first illustrated at selected target sites representative of terrestrial biomes with distinct vegetation type and seasonality. A comparison with GLDAS-Noah and ERA5 modeled soil moisture at these sites shows general agreement in terms of temporal phase except in areas with limited temporal coverage in winter season due to snow. A comparison with ground-based estimates at one of the sites shows good agreement of both temporal phase and absolute magnitude. A global assessment of the dominant features and spatial distribution of soil moisture variability is then provided. Results show that, despite still being a relatively short data set, SMOS data provides coherent and reliable variability patterns at both seasonal and interannual scales. Subseasonal components are characterized as white noise. The observed linear trends, based upon one strong El Niño event in 2016, are consistent with the known El Niño Southern Oscillation (ENSO) teleconnections. This work provides new insight into recent changes in surface soil moisture and can help further our understanding of the terrestrial branch of the water cycle and of global patterns of climate anomalies. Also, it is an important support to multi-decadal soil moisture observational data records, hydrological studies and land data assimilation projects using remotely sensed observations.


2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


2018 ◽  
Vol 31 (24) ◽  
pp. 10123-10139 ◽  
Author(s):  
Chuan-Yang Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka

El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170409 ◽  
Author(s):  
Xiangzhong Luo ◽  
Trevor F. Keenan ◽  
Joshua B. Fisher ◽  
Juan-Carlos Jiménez-Muñoz ◽  
Jing M. Chen ◽  
...  

The El Niño-Southern Oscillation exerts a large influence on global climate regimes and on the global carbon cycle. Although El Niño is known to be associated with a reduction of the global total land carbon sink, results based on prognostic models or measurements disagree over the relative contribution of photosynthesis to the reduced sink. Here, we provide an independent remote sensing-based analysis on the impact of the 2015–2016 El Niño on global photosynthesis using six global satellite-based photosynthesis products and a global solar-induced fluorescence (SIF) dataset. An ensemble of satellite-based photosynthesis products showed a negative anomaly of −0.7 ± 1.2 PgC in 2015, but a slight positive anomaly of 0.05 ± 0.89 PgC in 2016, which when combined with observations of the growth rate of atmospheric carbon dioxide concentrations suggests that the reduction of the land residual sink was likely dominated by photosynthesis in 2015 but by respiration in 2016. The six satellite-based products unanimously identified a major photosynthesis reduction of −1.1 ± 0.52 PgC from savannahs in 2015 and 2016, followed by a highly uncertain reduction of −0.22 ± 0.98 PgC from rainforests. Vegetation in the Northern Hemisphere enhanced photosynthesis before and after the peak El Niño, especially in grasslands (0.33 ± 0.13 PgC). The patterns of satellite-based photosynthesis ensemble mean were corroborated by SIF, except in rainforests and South America, where the anomalies of satellite-based photosynthesis products also diverged the most. We found the inter-model variation of photosynthesis estimates was strongly related to the discrepancy between moisture forcings for models. These results highlight the importance of considering multiple photosynthesis proxies when assessing responses to climatic anomalies. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


2021 ◽  
pp. 1-60

Abstract The present study investigated impacts of strong and weak El Niño events on Central Asian precipitation variability from El Niño developing years to decaying years. It is found that strong El Niño events persistently enhance Central Asian precipitation from the mature winter to decaying summer. Large warm sea surface temperature (SST) anomalies in the tropical central-eastern Pacific induce anomalous upper-level divergence and updraft over Central Asia through large-scale convergence and divergence in the mature winter and decaying spring. Meanwhile, the associated wind anomalies induce anomalous eastward and northeastward moisture flux from the North Atlantic and Arabian Sea to Central Asia. Both anomalous ascent and moisture flux convergence favor above-normal precipitation over Central Asia in the mature winter and decaying spring. The El Niño events induced Central Asian precipitation anomalies are extended to the decaying summer due to the role of soil moisture. Increased rainfall in winter and spring enhances soil moisture in the following summer, which in turn, contributes to more precipitation in summer through modulating regional evaporation. During weak El Niño events, significant wet anomalies are only seen in the developing autumn, which result from anomalous southeastward moisture flux from the Arctic Ocean, and the abnormal signals are weak in the other seasons. The different responses of Central Asian precipitation to strong and weak El Niño events may be attributed to the difference in intensity of tropical SST anomalies between the two types of events.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 211 ◽  
Author(s):  
Jian Rao ◽  
Rongcai Ren ◽  
Xin Xia ◽  
Chunhua Shi ◽  
Dong Guo

Using reanalysis and the sea surface temperature (SST) analysis, the combined impact of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the northern winter stratosphere is investigated. The warm and weak stratospheric polar vortex response to El Niño simply appears during positive PDO, whereas the cold and strong stratospheric polar vortex response to La Niña is preferable during negative PDO in the reanalysis. Two mechanisms may account for the enhanced stratospheric response when ENSO and PDO are in phase. First, the asymmetries of the intensity and frequency between El Niño and La Niña can be identified for the two PDO phases. Second, the extratropical SST anomalies in the North Pacific may also play a role in the varying extratropical response to ENSO. The North Pacific SST anomalies related to PDO superimpose ENSO SST anomalies when they are in phase but undermine them when they are out of phase. The superimposed North Pacific SST anomalies help to increase SST meridional gradient anomalies between tropical and extratropics, as well as to lock the local height response to ENSO. Therefore, the passages for the upward propagation of waves from the troposphere is more unimpeded when positive PDO is configured with El Niño, and vice versa when negative PDO is configured with La Niña.


2012 ◽  
Vol 25 (18) ◽  
pp. 6318-6329 ◽  
Author(s):  
Wenju Cai ◽  
Peter van Rensch ◽  
Tim Cowan ◽  
Harry H. Hendon

Abstract Recent research has shown that the climatic impact from El Niño–Southern Oscillation (ENSO) on middle latitudes west of the western Pacific (e.g., southeast Australia) during austral spring (September–November) is conducted via the tropical Indian Ocean (TIO). However, it is not clear whether this impact pathway is symmetric about the positive and negative phases of ENSO and the Indian Ocean dipole (IOD). It is shown that a strong asymmetry does exist. For ENSO, only the impact from El Niño is conducted through the TIO pathway; the impact from La Niña is delivered through the Pacific–South America pattern. For the IOD, a greater convection anomaly and wave train response occurs during positive IOD (pIOD) events than during negative IOD (nIOD) events. This “impact asymmetry” is consistent with the positive skewness of the IOD, principally due to a negative skewness of sea surface temperature (SST) anomalies in the east IOD (IODE) pole. In the IODE region, convection anomalies are more sensitive to a per unit change of cold SST anomalies than to the same unit change of warm SST anomalies. This study shows that the IOD skewness occurs despite the greater damping, rather than due to a breakdown of this damping as suggested by previous studies. This IOD impact asymmetry provides an explanation for much of the reduction in spring rainfall over southeast Australia during the 2000s. Key to this rainfall reduction is the increased occurrences of pIOD events, more so than the lack of nIOD events.


2020 ◽  
Author(s):  
Michio Watanabe ◽  
Hiroaki Tatebe ◽  
Hiroshi Koyama ◽  
Tomohiro Hajima ◽  
Masahiro Watanabe ◽  
...  

Abstract. In the equatorial Pacific, air–sea CO2 flux is known to fluctuate in response to inherent climate variability, predominantly the El Niño–Southern Oscillation (ENSO). For both investigation of the response of the carbon cycle to human-induced radiative perturbations and prediction of future global CO2 concentrations, representation of the interannual fluctuation of CO2 fluxes in Earth system models (ESMs) is essential. This study attempted to reproduce observed air–sea CO2 flux fluctuations in the equatorial Pacific using two ESMs, to which observed ocean temperature and salinity data were assimilated. When observations were assimilated into an ESM whose inherent ENSO variability was weaker than observations, nonnegligible correction terms on the governing equation of the equatorial ocean temperature caused anomalously false equatorial upwelling during El Niño periods that brought water rich in dissolved inorganic carbon from the subsurface layer to the surface layer. Contrary to observation, this resulted in an unusual upward air–sea CO2 flux anomaly that should not occur during El Niño periods. The absence of such unrealistic upwelling anomalies in the other ESM with the data assimilation reflects better representation of ENSO and the mean thermocline in this ESM without data assimilation. Our results demonstrate that adequate simulation of ENSO in an ESM is crucial for accurate reproduction of the variability in air–sea CO2 flux and hence, in the carbon cycle.


Sign in / Sign up

Export Citation Format

Share Document