scholarly journals Estimating the Role of SST in Atmospheric Surface Wind Variability over the Tropical Atlantic and Pacific

2019 ◽  
Vol 32 (13) ◽  
pp. 3899-3915 ◽  
Author(s):  
Ingo Richter ◽  
Takeshi Doi

Abstract The influence of sea surface temperature (SST) on interannual surface wind variability in the tropical Atlantic and Pacific is estimated using sensitivity experiments with the SINTEX-F GCM and the ensemble spread in a nine-member control simulation. Two additional estimates are derived for both SINTEX-F and the ERA-Interim reanalysis using regression analysis and singular value decomposition. All methods yield quite consistent estimates of the fraction of surface wind variability that is determined by SST and therefore potentially predictable. In the equatorial Atlantic, analysis suggests that for the period 1982–2014 approximately 2/3 of surface zonal wind variability in boreal spring and early summer is potentially predictable, while 1/3 is due to noise. Of the predictable component, up to about 35% may be driven from outside the tropical Atlantic, suggesting an important role for remote forcing and a diminished one for local feedbacks. In the northern tropical Atlantic, only 30% of boreal winter variability is predictable, most of which is forced from the Pacific. This suggests a minor role for local coupled air–sea feedbacks. For the equatorial Pacific, the results suggest high predictability throughout the year, most of which is due to local SST, with the tropical Atlantic only playing a minor role in boreal summer. In the tropical Atlantic, atmospheric internal variability is strongly dependent on the presence of deep convection, which, in turn, is related to mean SST. A similar, but weaker, state dependence of internal variability is evident in the tropical Pacific.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Ran Wang ◽  
Lin Chen ◽  
Tim Li ◽  
Jing-Jia Luo

The Atlantic Niño/Niña, one of the dominant interannual variability in the equatorial Atlantic, exerts prominent influence on the Earth’s climate, but its prediction skill shown previously was unsatisfactory and limited to two to three months. By diagnosing the recently released North American Multimodel Ensemble (NMME) models, we find that the Atlantic Niño/Niña prediction skills are improved, with the multi-model ensemble (MME) reaching five months. The prediction skills are season-dependent. Specifically, they show a marked dip in boreal spring, suggesting that the Atlantic Niño/Niña prediction suffers a “spring predictability barrier” like ENSO. The prediction skill is higher for Atlantic Niña than for Atlantic Niño, and better in the developing phase than in the decaying phase. The amplitude bias of the Atlantic Niño/Niña is primarily attributed to the amplitude bias in the annual cycle of the equatorial sea surface temperature (SST). The anomaly correlation coefficient scores of the Atlantic Niño/Niña, to a large extent, depend on the prediction skill of the Niño3.4 index in the preceding boreal winter, implying that the precedent ENSO may greatly affect the development of Atlantic Niño/Niña in the following boreal summer.


2021 ◽  
Author(s):  
Ingo Richter ◽  
Yu Kosaka ◽  
Hiroki Tokinaga ◽  
Shoichiro Kido

<p>The potential influence of the tropical Atlantic on the development of ENSO has received increased attention over recent years. In particular equatorial Atlantic variability (also known as the Atlantic zonal mode or AZM) has been shown to be anticorrelated with ENSO, i.e. cold AZM events in boreal summer (JJA) tend to be followed by El Niño in winter (DJF), and vice versa for warm AZM events. One problem with disentangling the two-way interaction between the equatorial Atlantic and Pacific is that both ENSO and the AZM tend to develop in boreal spring (MAM).</p><p>Here we use a set of GCM sensitivity experiments to quantify the strength of the Atlantic-Pacific link. The starting point is a 1000-year free-running control simulation with the GFDL CM 2.1 model. From this control simulation, we pick years in which a cold AZM event in JJA is followed by an El Niño in DJF. These years serve as initial conditions for “perfect model” prediction experiments with 10 ensemble members each. In the control experiments, the predictions evolve freely for 12 months from January 1 of each selected year. In the second set of predictions, SSTs are gradually relaxed to climatology in the tropical Atlantic, so that the cold AZM event is suppressed. In the third set of predictions, we restore the tropical Pacific SSTs to climatology, so that the El Niño event is suppressed.</p><p>The results suggest that, on average, the tropical Atlantic SST anomalies increase the strength of El Niño in the following winter by about 10-20%. If, on the other hand, El Niño development is suppressed, the amplitude of the cold AZM event also reduces by a similar amount. The results suggest that, in the context of this GCM, the influence of AZM events on ENSO development is relatively weak but not negligible. The fact that ENSO also influences the AZM in boreal spring highlights the complex two-way interaction between these two modes of variability.</p>


2020 ◽  
Author(s):  
Ingo Richter ◽  
Hiroki Tokinaga

<p>General circulation models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) are examined with respect to their ability to simulate the mean state and variability of the tropical Atlantic, as well as its linkage to the tropical Pacific. While, on average, mean state biases have improved little relative to the previous intercomparison (CMIP5), there are now a few models with very small biases. In particular the equatorial Atlantic warm SST and westerly wind biases are mostly eliminated in these models. Furthermore, interannual variability in the equatorial and subtropical Atlantic is quite realistic in a number of CMIP6 models, which suggests that they should be useful tools for understanding and predicting variability patterns. The evolution of equatorial Atlantic biases follows the same pattern as in previous model generations, with westerly wind biases during boreal spring preceding warm sea-surface temperature (SST) biases in the east during boreal summer. A substantial portion of the westerly wind bias exists already in atmosphere-only simulations forced with observed SST, suggesting an atmospheric origin. While variability is relatively realistic in many models, SSTs seem less responsive to wind forcing than observed, both on the equator and in the subtropics, possibly due to an excessively deep mixed layer originating in the oceanic component. Thus models with realistic SST amplitude tend to have excessive wind amplitude. The models with the smallest mean state biases all have relatively high resolution but there are also a few low-resolution models that perform similarly well, indicating that resolution is not the only way toward reducing tropical Atlantic biases. The results also show a relatively weak link between mean state biases and the quality of the simulated variability. The linkage to the tropical Pacific shows a wide range of behaviors across models, indicating the need for further model improvement.</p>


2005 ◽  
Vol 18 (20) ◽  
pp. 4168-4184 ◽  
Author(s):  
Gregory R. Foltz ◽  
Michael J. McPhaden

Abstract Recent observations have shown evidence of intraseasonal oscillations (with periods of approximately 1–2 months) in the northern and southern tropical Atlantic trade winds. In this paper, the oceanic response to the observed intraseasonal wind variability is addressed through an analysis of the surface mixed layer heat balance, focusing on three locations in the northwestern tropical Atlantic where in situ measurements from moored buoys are available (14.5°N, 51°W; 15°N, 38°W; and 18°N, 34°W). It is found that local heat storage at all three locations is balanced primarily by wind-induced latent heat loss, which is the same mechanism that is believed to play a dominant role on interannual and decadal time scales in the region. It is also found that the intraseasonal wind speed oscillations are linked to changes in surface wind convergence and convection over the western equatorial Atlantic warm pool. These atmospheric circulation anomalies and wind-induced SST anomalies potentially feed back on one another to affect longer time-scale variability in the region.


2021 ◽  
Author(s):  
Koffi Worou ◽  
Hugues Goosse ◽  
Thierry Fichefet

<p>Much of the rainfall variability in the Guinean coast area during the boreal summer is driven by the sea surface temperature (SST) variations in the eastern equatorial Atlantic, amplified by land-atmosphere interactions. This oceanic region corresponds to the center of action of the Atlantic Equatorial mode, also termed Atlantic Niño (ATL3), which is the leading SST mode of variability in the tropical Atlantic basin. In years of positive ATL3, above normal SST conditions in the ATL3 area weaken the sea level pressure gradient between the West African lands and the ocean, which in turn reduces the monsoon flow penetration into Sahel. Subsequently, the rainfall increases over the Guinean coast area. According to observations and climate models, the relation between the Atlantic Niño and the rainfall in coastal Guinea is stationary over the 20<sup>th</sup> century. While this relation remains unchanged over the 21<sup>st</sup> century in climate model projections, the strength of the teleconnection is reduced in a warmer climate. The weakened ATL3 effect on the rainfall over the tropical Atlantic (in years of positive ATL3) has been attributed to the stabilization of the atmosphere column above the tropical Atlantic. Analysis of historical and high anthropogenic emission scenario (the Shared Socioeconomic Pathways 5-8.5) simulations from 31 models participating in the sixth phase of the Coupled Model Intercomparison Project suggests an additional role of the Bjerkness feedback. A weakened SST amplitude related to ATL3 positive phases reduces the anomalous westerlies, which in turn increases the upwelling cooling effect on the sea surface. Both the Guinean coast region and the equatorial Atlantic experiment the projected rainfall reduction associated with ATL3, with a higher confidence over the ocean than over the coastal lands.</p>


2006 ◽  
Vol 19 (23) ◽  
pp. 6047-6061 ◽  
Author(s):  
Timothy N. Stockdale ◽  
Magdalena A. Balmaseda ◽  
Arthur Vidard

Abstract Variations in tropical Atlantic SST are an important factor in seasonal forecasts in the region and beyond. An analysis is given of the capabilities of the latest generation of coupled GCM seasonal forecast systems to predict tropical Atlantic SST anomalies. Skill above that of persistence is demonstrated in both the northern tropical and equatorial Atlantic, but not farther south. The inability of the coupled models to correctly represent the mean seasonal cycle is a major problem in attempts to forecast equatorial SST anomalies in the boreal summer. Even when forced with observed SST, atmosphere models have significant failings in this area. The quality of ocean initial conditions for coupled model forecasts is also a cause for concern, and the adequacy of the near-equatorial ocean observing system is in doubt. A multimodel approach improves forecast skill only modestly, and large errors remain in the southern tropical Atlantic. There is still much scope for improving forecasts of tropical Atlantic SST.


2015 ◽  
Vol 6 (2) ◽  
pp. 1557-1577
Author(s):  
Y. Tubul ◽  
I. Koren ◽  
O. Altaratz

Abstract. A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the intertropical convergence zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern Hadley cell. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scale spatiotemporal variability of the SWD belt during a 6 year period (2003–2008) and the related links to cloud properties over the Atlantic Ocean. The Atlantic SWD belt was found to be most pronounced from May to August, between the equator and 2° N latitude. A positive correlation and a strong link were observed between formation of the SWD belt and a sharp sea-surface temperature gradient on the northern border of the cold tongue, supporting Wallace's vertical-mixing mechanism. The dominant cloud type over this region was shallow cumulus. Cloud properties were shown to be strongly linked to the formation and strength of the SWD zone. Our findings help understand the link between ocean–atmosphere dynamics and cloud properties over this region, and suggest that the SWD zone be considered a unique cloud belt of the southern branch of the Atlantic Hadley cell.


2018 ◽  
Vol 19 (3) ◽  
pp. 793-801 ◽  
Author(s):  
QURNIA WULAN SARI ◽  
EKO SISWANTO ◽  
DEDI SETIABUDIDAYA ◽  
INDRA YUSTIAN ◽  
ISKHAQ ISKANDAR

Sari QW, Siswanto E, Setiabudidaya D, Yustian I, Iskandar I. 2018. Spatial and temporal variability of surface chlorophyll-a in the Gulf of Tomini, Sulawesi, Indonesia. Biodiversitas 19: 793-801. The Gulf of Tomini (GoT) is mostly influenced by seasonal and interannual events. So, the immensive aim of this study is to explore spatial and temporal variations of chlorophyll-a (chl-a) and oceanographic parameters in the GoT under the influences of monsoonal winds, El Niño Southern Oscillation (ENSO), and Indian Ocean Dipole (IOD). The data were collected from the satellite imaging of chl-a and sea and surface temperature (SST) as well as surface wind from the reanalysis data for a period of January 2003 to December 2015. Monthly variations of the chl-a and SST in the GoT reveal chl-a bloom in the center part to the mouth of the GoT during the southeast monsoon season (boreal summer). The chl-a concentrations were relatively higher (>0.1 mg m-3) and distributed throughout most of the areas near the Maluku Sea. The SST in the middle of the GoT was relatively lower than that near the Maluku Sea (the eastern part of the GoT). On the other hand, during the northwest monsoon (boreal winter), the chl-a concentration decreased (<0.1 mg m-3). During this season, the SST was relatively higher (28-29 °C) than that during the boreal summer (27-26 °C) and distributed uniformly. Meanwhile, on interannual timescale, the ENSO and IOD play important role in regulating chl-a distribution in the GoT. High surface chl-a concentration was observed during El Niño and/or positive IOD events. Enhanced surface chl-a concentration during El Niño and/or positive IOD events was associated with the upward Ekman pumping induced by the southeasterly wind anomalies. The situation was reversed during the Niña and/or negative IOD events.


2021 ◽  
Author(s):  
Sabeerali C. T ◽  
Ajaya Mohan Ravindran ◽  
Praveen V

Abstract The dominant interannual SST variability in the eastern equatorial Atlantic referred to as the Atlantic Zonal Mode (AZM), which peaks in boreal summer impacts global weather patterns. The cold (warm) phase of this ocean-atmospheric coupled phenomenon enhances (weakens) the intensity of the Indian summer monsoon rainfall (ISMR). Observational studies show a strengthening relationship between AZM and ISMR in recent decades, providing a predictive signal for the ISMR. However, a suite of Coupled Model Intercomparison Project Phase 6 (CMIP6) model simulations in the highest emission scenario (SSP58.5) show a weakening relationship between ISMR and AZM in the future (2050-2099). The strengthening of atmospheric thermal stability over the tropical Atlantic in the warming scenario weakens the associated convection over the eastern equatorial Atlantic in response to the warm phase of AZM. This leads to weakening velocity potential response over the Indian subcontinent, resulting in a weak AZM-ISMR relationship. There is no convincing evidence to indicate that either the tropical Atlantic SST bias or the AZM-ISMR teleconnection bias plays a crucial role in the potential weakening of this relationship. These results imply that ISMR prediction will become more challenging in a warming scenario as one of the major external boundary forces that influence monsoon weakens.


2021 ◽  
Author(s):  
François Counillon ◽  
Noel Keenlyside ◽  
Thomas Toniazzo ◽  
Shunya Koseki ◽  
Teferi Demissie ◽  
...  

AbstractWe investigate the impact of large climatological biases in the tropical Atlantic on reanalysis and seasonal prediction performance using the Norwegian Climate Prediction Model (NorCPM) in a standard and an anomaly coupled configuration. Anomaly coupling corrects the climatological surface wind and sea surface temperature (SST) fields exchanged between oceanic and atmospheric models, and thereby significantly reduces the climatological model biases of precipitation and SST. NorCPM combines the Norwegian Earth system model with the ensemble Kalman filter and assimilates SST and hydrographic profiles. We perform a reanalysis for the period 1980–2010 and a set of seasonal predictions for the period 1985–2010 with both model configurations. Anomaly coupling improves the accuracy and the reliability of the reanalysis in the tropical Atlantic, because the corrected model enables a dynamical reconstruction that satisfies better the observations and their uncertainty. Anomaly coupling also enhances seasonal prediction skill in the equatorial Atlantic to the level of the best models of the North American multi-model ensemble, while the standard model is among the worst. However, anomaly coupling slightly damps the amplitude of Atlantic Niño and Niña events. The skill enhancements achieved by anomaly coupling are largest for forecast started from August and February. There is strong spring predictability barrier, with little skill in predicting conditions in June. The anomaly coupled system show some skill in predicting the secondary Atlantic Niño-II SST variability that peaks in November–December from August 1st.


Sign in / Sign up

Export Citation Format

Share Document