scholarly journals Spatial and temporal variability of surface chlorophyll-a in the Gulf of Tomini, Sulawesi, Indonesia

2018 ◽  
Vol 19 (3) ◽  
pp. 793-801 ◽  
Author(s):  
QURNIA WULAN SARI ◽  
EKO SISWANTO ◽  
DEDI SETIABUDIDAYA ◽  
INDRA YUSTIAN ◽  
ISKHAQ ISKANDAR

Sari QW, Siswanto E, Setiabudidaya D, Yustian I, Iskandar I. 2018. Spatial and temporal variability of surface chlorophyll-a in the Gulf of Tomini, Sulawesi, Indonesia. Biodiversitas 19: 793-801. The Gulf of Tomini (GoT) is mostly influenced by seasonal and interannual events. So, the immensive aim of this study is to explore spatial and temporal variations of chlorophyll-a (chl-a) and oceanographic parameters in the GoT under the influences of monsoonal winds, El Niño Southern Oscillation (ENSO), and Indian Ocean Dipole (IOD). The data were collected from the satellite imaging of chl-a and sea and surface temperature (SST) as well as surface wind from the reanalysis data for a period of January 2003 to December 2015. Monthly variations of the chl-a and SST in the GoT reveal chl-a bloom in the center part to the mouth of the GoT during the southeast monsoon season (boreal summer). The chl-a concentrations were relatively higher (>0.1 mg m-3) and distributed throughout most of the areas near the Maluku Sea. The SST in the middle of the GoT was relatively lower than that near the Maluku Sea (the eastern part of the GoT). On the other hand, during the northwest monsoon (boreal winter), the chl-a concentration decreased (<0.1 mg m-3). During this season, the SST was relatively higher (28-29 °C) than that during the boreal summer (27-26 °C) and distributed uniformly. Meanwhile, on interannual timescale, the ENSO and IOD play important role in regulating chl-a distribution in the GoT. High surface chl-a concentration was observed during El Niño and/or positive IOD events. Enhanced surface chl-a concentration during El Niño and/or positive IOD events was associated with the upward Ekman pumping induced by the southeasterly wind anomalies. The situation was reversed during the Niña and/or negative IOD events.

2020 ◽  
Vol 12 (6) ◽  
pp. 933
Author(s):  
Jiayi Pan ◽  
Adam T. Devlin ◽  
Hui Lin

This study investigates correlations among interannual variabilities of sea surface wind, sea surface temperature (SST), and sea surface height anomaly (SSHA) in the tropical region from latitude 15°S to 15°N. Sea surface winds were derived from the European Space Agency (ESA)’s European Remote-Sensing Satellite (ERS)-1/2 scatterometer and the National Aeronautics and Space Administration (NASA)’s QuickSCAT observations; SST data were obtained from the National Oceanic and Atmospheric Administration (NOAA)’s Advanced Very-High-Resolution Radiometer (AVHRR) missions; and the SSHA data were acquired from the NASA TOPEX/Poseidon and Jason-1 altimeter measurements. All these datasets were resampled into 1° × 1° grids between 15°S and 15°N. The annual cycles were removed from all datasets and an empirical orthogonal function (EOF) analysis was applied to extract the major modes of spatial and temporal variability. The first EOF modes of the wind, SST, and SSHA revealed the interannual variability of each data source, reflecting spatio-temporal signatures related to El Nino Southern Oscillation (ENSO) events. The correlation results suggested that, during the strong El Nino period of 1997–1998, the wind variability led the variability of SST. A wind-forced delayed action oscillator (WDAO) system was proposed and analyzed using the ENSO modes of wind and SST data, covering the period from October 1995 to June 2002. The results show that the delayed SST mechanism is the strongest forcing factor in the WDAO system, and the wind forcing is the second strongest forcing factor. The correlations among SST change rate, the wind, and delayed/un-delayed SST also confirm the WDAO analysis’ results.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Adi Wijaya ◽  
UMI ZAKIYAH ◽  
ABU BAKAR SAMBAH ◽  
DADUK SETYOHADI

Abstract. Wijaya A, Zakiyah U, Sambah AB, Setyohadi D. 2020. Spatio-temporal variability of temperature and chlorophyll-a concentration of sea surface in Bali Strait, Indonesia. Biodiversitas 21: 5283-5290. The Bali Strait is influenced by seasonal and inter-annual systems. El Nino-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are climate variabilities that affect water conditions. The knowledge about influence of ENSO and IOD variations on the fertility of waters in the Bali Strait is still lacking. The purpose of this study was to determine the effect of seasonal and inter-annual variability on the variability of Sea Surface Temperature (SST) and Sea Surface Chlorophyll-a (SSC) in the Bali Strait. This study applied SST and SSC data collected from the Aqua/Terra MODIS satellite, as well as the ENSO and IOD indices during March 2000-December 2019. The results described that the effect of ENSO on SST and SSC was low and IOD on SST and SSC was quite high. The effect was quite high between IOD and SST anomaly of-0.401. Seasonal variations indicate the abundance of high SSC and low SST in the southeast monsoon (JJA) which characterizes upwelling. Meanwhile, in the northwest monsoon (DJF), SSC was low and SST was high which characterizes downwelling. This condition cannot separate from the monsoonal process that occurred in the Bali Strait. The inter-annual variation showed that in the strong El Nino period and IOD (+) triggers a negative SST anomaly and a positive SSC results in strong upwelling, while in the strong La Nina period and strong IOD (-) triggers a positive SST anomaly and a negative SSC results in downwelling. The inter-annual variability of SSC influenced by IOD rather than ENSO. This condition indicates that the ENSO/IOD event changes the period of SSC concentration.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2010 ◽  
Vol 67 (10) ◽  
pp. 3097-3112 ◽  
Author(s):  
Katrina S. Virts ◽  
John M. Wallace

Abstract Cloud fields based on the first three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission are used to investigate the relationship between cirrus within the tropical tropopause transition layer (TTL) and the Madden–Julian oscillation (MJO), the annual cycle, and El Niño–Southern Oscillation (ENSO). The TTL cirrus signature observed in association with the MJO resembles convectively induced, mixed Kelvin–Rossby wave solutions above the Pacific warm pool region. This signature is centered to the east of the peak convection and propagates eastward more rapidly than the convection; it exhibits a pronounced eastward tilt with height, suggestive of downward phase propagation and upward energy dispersion. A cirrus maximum is observed over equatorial Africa and South America when the enhanced MJO-related convection enters the western Pacific. Tropical-mean TTL cirrus is modulated by the MJO, with more than twice as much TTL cirrus fractional coverage equatorward of 10° latitude when the enhanced convection enters the Pacific than a few weeks earlier, when the convection is over the Indian Ocean. The annual cycle in cirrus clouds around the base of the TTL is equatorially asymmetric, with more cirrus observed in the summer hemisphere. Higher in the TTL, the annual cycle in cirrus clouds is more equatorially symmetric, with a maximum in the boreal winter throughout most of the tropics. The ENSO signature in TTL cirrus is marked by a zonal shift of the peak cloudiness toward the central Pacific during El Niño and toward the Maritime Continent during La Niña.


2000 ◽  
Vol 203 (15) ◽  
pp. 2311-2322 ◽  
Author(s):  
B. Culik ◽  
J. Hennicke ◽  
T. Martin

We satellite-tracked five Humboldt penguins during the strong 1997/98 El Nino Southern Oscillation (ENSO) from their breeding island Pan de Azucar (26 degrees 09′S, 70 degrees 40′W) in Northern Chile and related their activities at sea to satellite-derived information on sea surface temperature (SST), sea surface temperature anomaly (SSTA), wind direction and speed, chlorophyll a concentrations and statistical data on fishery landings. We found that Humboldt penguins migrated by up to 895 km as marine productivity decreased. The total daily dive duration was highly correlated with SSTA, ranging from 3.1 to 12.5 h when the water was at its warmest (+4 degrees C). Birds travelled between 2 and 116 km every day, travelling further when SSTA was highest. Diving depths (maximum 54 m), however, were not increased with respect to previous years. Two penguins migrated south and, independently of each other, located an area of high chlorophyll a concentration 150 km off the coast. Humboldt penguins seem to use day length, temperature gradients, wind direction and olfaction to adapt to changing environmental conditions and to find suitable feeding grounds. This makes Humboldt penguins biological in situ detectors of highly productive marine areas, with a potential use in the verification of trends detected by remote sensors on board satellites.


2015 ◽  
Vol 12 (21) ◽  
pp. 17643-17692 ◽  
Author(s):  
G. Fischer ◽  
O. Romero ◽  
U. Merkel ◽  
B. Donner ◽  
M. Iversen ◽  
...  

Abstract. A more than two-decadal sediment trap record from the Eastern Boundary Upwelling Ecosystem (EBUE) off Cape Blanc, Mauritania, is analyzed with respect to deep ocean mass fluxes, flux components and their variability on seasonal to decadal timescales. The total mass flux revealed interannual fluctuations which were superimposed by fluctuations on decadal timescales possibly linked to the Atlantic Multidedadal Oscillation (AMO). High winter fluxes of biogenic silica (BSi), used as a measure of marine production mostly by diatoms largely correspond to a positive North Atlantic Oscillation (NAO) index during boreal winter (December–March). However, this relationship is weak. The highest positive BSi anomaly was in winter 2004–2005 when the NAO was in a neutral state. More episodic BSi sedimentation events occurred in several summer seasons between 2001 and 2005, when the previous winter NAO was neutral or even negative. We suggest that distinct dust outbreaks and deposition in the surface ocean in winter but also in summer/fall enhanced particle sedimentation and carbon export on rather short timescales via the ballasting effect, thus leading to these episodic sedimentation events. Episodic perturbations of the marine carbon cycle by dust outbreaks (e.g. in 2005) weakened the relationships between fluxes and larger scale climatic oscillations. As phytoplankton biomass is high throughout the year in our study area, any dry (in winter) or wet (in summer) deposition of fine-grained dust particles is assumed to enhance the efficiency of the biological pump by being incorporated into dense and fast settling organic-rich aggregates. A good correspondence between BSi and dust fluxes was observed for the dusty year 2005, following a period of rather dry conditions in the Sahara/Sahel region. Large changes of all fluxes occurred during the strongest El Niño–Southern Oscillation (ENSO) in 1997–1999 where low fluxes were obtained for almost one year during the warm El Niño and high fluxes in the following cold La Niña phase. Bakun (1990) suggested an intensification of coastal upwelling due to increased winds ("Bakun upwelling intensification hypothesis", Cropper et al., 2014) and global change. We did not observe an increase of any flux component off Cape Blanc during the past two and a half decades which might support this hypothesis. Furthermore, fluxes of mineral dust did not show any positive or negative trends over time which would have suggested enhanced desertification or "Saharan greening" during the last few decades.


2019 ◽  
Vol 32 (21) ◽  
pp. 7483-7506 ◽  
Author(s):  
Yuntao Wei ◽  
Hong-Li Ren

Abstract This study investigates modulation of El Niño–Southern Oscillation (ENSO) on the Madden–Julian oscillation (MJO) propagation during boreal winter. Results show that the spatiotemporal evolution of MJO manifests as a fast equatorially symmetric propagation from the Indian Ocean to the equatorial western Pacific (EWP) during El Niño, whereas the MJO during La Niña is very slow and tends to frequently “detour” via the southern Maritime Continent (MC). The westward group velocity of the MJO is also more significant during El Niño. Based on the dynamics-oriented diagnostics, it is found that, during El Niño, the much stronger leading suppressed convection over the EWP excites a significant front Walker cell, which further triggers a larger Kelvin wave easterly wind anomaly and premoistening and heating effects to the east. However, the equatorial Rossby wave to the west tends to decouple with the MJO convection. Both effects can result in fast MJO propagation. The opposite holds during La Niña. A column-integrated moisture budget analysis reveals that the sea surface temperature anomaly driving both the eastward and equatorward gradients of the low-frequency moisture anomaly during El Niño, as opposed to the westward and poleward gradients during La Niña, induces moist advection over the equatorial eastern MC–EWP region due to the intraseasonal wind anomaly and therefore enhances the zonal asymmetry of the moisture tendency, supporting fast propagation. The role of nonlinear advection by synoptic-scale Kelvin waves is also nonnegligible in distinguishing fast and slow MJO modes. This study emphasizes the crucial roles of dynamical wave feedback and moisture–convection feedback in modulating the MJO propagation by ENSO.


2019 ◽  
Vol 32 (22) ◽  
pp. 7643-7661 ◽  
Author(s):  
Dillon J. Amaya ◽  
Yu Kosaka ◽  
Wenyu Zhou ◽  
Yu Zhang ◽  
Shang-Ping Xie ◽  
...  

Abstract Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (&gt;15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.


2010 ◽  
Vol 23 (15) ◽  
pp. 4045-4059 ◽  
Author(s):  
Paul E. Roundy ◽  
Kyle MacRitchie ◽  
Jonas Asuma ◽  
Timothy Melino

Abstract Composite global patterns associated with the El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) are frequently applied to help make predictions of weather around the globe at lead times beyond a few days. However, ENSO modulates the background states through which the MJO and its global response patterns propagate. This paper explores the possibility that nonlinear variations confound the combined use of composites based on the MJO and ENSO separately. Results indicate that when both modes are active at the same time, the associated patterns in the global flow are poorly represented by simple linear combinations of composites based on the MJO and ENSO individually. Composites calculated by averaging data over periods when both modes are present at the same time more effectively describe the associated weather patterns. Results reveal that the high-latitude response to the MJO varies with ENSO over all longitudes, but especially across the North Pacific Rim, North America, and the North Atlantic. Further analysis demonstrates that the MJO influence on indexes of the North Atlantic Oscillation is greatest during La Niña conditions or during periods of rapid adjustment in the phase of ENSO.


Sign in / Sign up

Export Citation Format

Share Document