scholarly journals Relating model bias and prediction skill in the equatorial Atlantic

2021 ◽  
Author(s):  
François Counillon ◽  
Noel Keenlyside ◽  
Thomas Toniazzo ◽  
Shunya Koseki ◽  
Teferi Demissie ◽  
...  

AbstractWe investigate the impact of large climatological biases in the tropical Atlantic on reanalysis and seasonal prediction performance using the Norwegian Climate Prediction Model (NorCPM) in a standard and an anomaly coupled configuration. Anomaly coupling corrects the climatological surface wind and sea surface temperature (SST) fields exchanged between oceanic and atmospheric models, and thereby significantly reduces the climatological model biases of precipitation and SST. NorCPM combines the Norwegian Earth system model with the ensemble Kalman filter and assimilates SST and hydrographic profiles. We perform a reanalysis for the period 1980–2010 and a set of seasonal predictions for the period 1985–2010 with both model configurations. Anomaly coupling improves the accuracy and the reliability of the reanalysis in the tropical Atlantic, because the corrected model enables a dynamical reconstruction that satisfies better the observations and their uncertainty. Anomaly coupling also enhances seasonal prediction skill in the equatorial Atlantic to the level of the best models of the North American multi-model ensemble, while the standard model is among the worst. However, anomaly coupling slightly damps the amplitude of Atlantic Niño and Niña events. The skill enhancements achieved by anomaly coupling are largest for forecast started from August and February. There is strong spring predictability barrier, with little skill in predicting conditions in June. The anomaly coupled system show some skill in predicting the secondary Atlantic Niño-II SST variability that peaks in November–December from August 1st.

2021 ◽  
Author(s):  
Francois Counillon ◽  
Noel Keenlyside ◽  
Thomas Toniazzo ◽  
Shunya Koseki ◽  
Teferi Demissie ◽  
...  

<p>We investigate the impact of large climatological biases in the tropical Atlantic on reanalysis and seasonal prediction performance using the Norwegian Climate Prediction Model (NorCPM) in a standard and an anomaly coupled configuration. Anomaly coupling corrects the climatological surface wind and sea surface temperature (SST) fields exchanged between oceanic and atmospheric models, and thereby significantly reduces the climatological model biases of precipitation and SST. NorCPM combines the Norwegian Earth system model (NorESM) with the Ensemble Kalman Filter and assimilates SST and hydrographic profiles. We perform a reanalysis for the period 1980-2010 and a set of seasonal predictions for the period 1985-2010 with both model configurations. Anomaly coupling improves the accuracy and the reliability of the reanalysis in the tropical Atlantic, because the corrected model enables a dynamical reconstruction that satisfies better the observations and their uncertainty.<span>  </span>Anomaly coupling also enhances seasonal prediction skill in the equatorial Atlantic to the level of the best models of the North American multi-model ensemble, while the standard model is among the worst. However, anomaly coupling slightly damps the amplitude of Atlantic Niño and Niña events. The skill enhancements achieved by anomaly coupling are largest for forecast started from August and February. There is strong spring predictability barrier, with little skill in predicting conditions in June. The anomaly coupled system show some skill in predicting the secondary Atlantic Niño-II SST variability that peaks in November-December from August 1st.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Ran Wang ◽  
Lin Chen ◽  
Tim Li ◽  
Jing-Jia Luo

The Atlantic Niño/Niña, one of the dominant interannual variability in the equatorial Atlantic, exerts prominent influence on the Earth’s climate, but its prediction skill shown previously was unsatisfactory and limited to two to three months. By diagnosing the recently released North American Multimodel Ensemble (NMME) models, we find that the Atlantic Niño/Niña prediction skills are improved, with the multi-model ensemble (MME) reaching five months. The prediction skills are season-dependent. Specifically, they show a marked dip in boreal spring, suggesting that the Atlantic Niño/Niña prediction suffers a “spring predictability barrier” like ENSO. The prediction skill is higher for Atlantic Niña than for Atlantic Niño, and better in the developing phase than in the decaying phase. The amplitude bias of the Atlantic Niño/Niña is primarily attributed to the amplitude bias in the annual cycle of the equatorial sea surface temperature (SST). The anomaly correlation coefficient scores of the Atlantic Niño/Niña, to a large extent, depend on the prediction skill of the Niño3.4 index in the preceding boreal winter, implying that the precedent ENSO may greatly affect the development of Atlantic Niño/Niña in the following boreal summer.


2012 ◽  
Vol 25 (17) ◽  
pp. 5689-5710 ◽  
Author(s):  
Caihong Wen ◽  
Yan Xue ◽  
Arun Kumar

Abstract Seasonal prediction skill of North Pacific sea surface temperature anomalies (SSTAs) and the Pacific decadal oscillation (PDO) in the NCEP Climate Forecast System (CFS) retrospective forecasts is assessed. The SST forecasts exhibit significant skills over much of the North Pacific for two seasons in advance and outperform persistence over much of the North Pacific except near the Kuroshio–Oyashia Extension. Similar to the “spring barrier” feature in the El Niño–Southern Oscillation forecasts, the central North Pacific SST experiences a faster drop in prediction skill for forecasts initialized from November to February than those from May to August. Forecasts for the PDO displayed a constant phase shift from the observation with respect to lead time. The PDO skill has a clear seasonality with highest skill for forecasts initialized in boreal spring. The impact of ENSO on the PDO and North Pacific SST prediction was investigated. The analysis revealed that seasonal prediction skill in the central North Pacific mainly results from the skillful prediction of ENSO. As a result, the PDO is more skillful than persistence at all lead times during ENSO years. On the other hand, persistence is superior to the CFS forecast during ENSO-neutral conditions owing to errors in initial conditions and deficiencies in model physics. Examination of seasonal variance and predictability (signal-to-noise ratio) further articulates the influence of ENSO on the PDO skill. The results suggest that improvement of ENSO prediction as well as reduction in model biases in the western North Pacific will lead to improvements in the PDO and North Pacific SST predictions.


2018 ◽  
Vol 31 (2) ◽  
pp. 515-536 ◽  
Author(s):  
Marta Martín-Rey ◽  
Irene Polo ◽  
Belén Rodríguez-Fonseca ◽  
Teresa Losada ◽  
Alban Lazar

The Atlantic multidecadal oscillation (AMO) is the leading mode of Atlantic sea surface temperature (SST) variability at multidecadal time scales. Previous studies have shown that the AMO could modulate El Niño–Southern Oscillation (ENSO) variance. However, the role played by the AMO in the tropical Atlantic variability (TAV) is still uncertain. Here, it is demonstrated that during negative AMO phases, associated with a shallower thermocline, the eastern equatorial Atlantic SST variability is enhanced by more than 150% in boreal summer. Consequently, the interannual TAV modes are modified. During negative AMO, the Atlantic Niño displays larger amplitude and a westward extension and it is preceded by a simultaneous weakening of both subtropical highs in winter and spring. In contrast, a meridional seesaw SLP pattern evolving into a zonal gradient leads the Atlantic Niño during positive AMO. The north tropical Atlantic (NTA) mode is related to a Scandinavian blocking pattern during winter and spring in negative AMO, while under positive AMO it is part of the SST tripole associated with the North Atlantic Oscillation. Interestingly, the emergence of an overlooked variability mode, here called the horseshoe (HS) pattern on account of its shape, is favored during negative AMO. This anomalous warm (cool) HS surrounding an eastern equatorial cooling (warming) is remotely forced by an ENSO phenomenon. During negative AMO, the tropical–extratropical teleconnections are enhanced and the Walker circulation is altered. This, together with the increased equatorial SST variability, could promote the ENSO impacts on TAV. The results herein give a step forward in the better understanding of TAV, which is essential to improving its modeling, impacts, and predictability.


2021 ◽  
Author(s):  
Fanny Chenillat ◽  
Julien Jouanno ◽  
Serena Illig ◽  
Founi Mesmin Awo ◽  
Gaël Alory ◽  
...  

<div><span>Surface chlorophyll-<em>a </em>concentration (CHL-<em>a</em>) remotely observed by satellite shows a marked seasonal and interannual variability in the Tropical Atlantic, with potential consequences on the marine trophic web. Seasonal and interannual CHL-<em>a </em>variability peaks in boreal summer and shows maxima in the equatorial Atlantic region at 10˚W, spreading from 0 to 30˚W. In this study, we analyze how the remotely-sensed surface CHL-<em>a </em>responds to the leading climate modes affecting the interannual equatorial Atlantic variability over the 1998-2018 period, namely the Atlantic Zonal Mode (AZM) and the North Tropical Atlantic Mode (NTA, also known as the Atlantic Meridional Mode). The AZM is characterized by anomalous warming (or cooling) along the eastern equatorial band. In contrast, the NTA is characterized by an interhemispheric pattern of the sea surface temperature (SST), with anomalous warm (cold) conditions in the north tropical Atlantic region and weak negative (positive) SST anomalies south of the equator. We show that both modes significantly drive the interannual Tropical Atlantic surface CHL-<em>a </em>variability, with different timings and contrasted modulation on the eastern and western portions of the cold tongue area. Our results also reveal that the NTA slightly dominates (40%) the summer tropical Atlantic interannual variability over the last two decades, most probably because of a positive phase of the Atlantic multidecadal oscillation. For each mode of variability, we analyze an event characterized by an extreme negative sea surface temperature (SST) anomaly in the Atlantic equatorial band. Both modes are associated with a positive CHL-<em>a </em>anomaly at the equator. In 2002, a negative phase of the NTA led to cold SST anomaly and high positive CHL-<em>a </em>in the western portion of the cold tongue, peaking in June-July and lasting until the end of the year. In contrast, in 2005, a negative phase of the AZM drove cool temperature and positive CHL-<em>a </em>in the eastern equatorial band, with a peak in May-June and almost no signature after August. Such contrasted year to year conditions can affect the marine ecosystem by changing temporal and spatial trophic niches for pelagic predators, thus inducing significant variations for ecosystem functioning and fisheries.</span></div>


2006 ◽  
Vol 19 (23) ◽  
pp. 6005-6024 ◽  
Author(s):  
H. M. Van den Dool ◽  
Peitao Peng ◽  
Åke Johansson ◽  
Muthuvel Chelliah ◽  
Amir Shabbar ◽  
...  

Abstract The question of the impact of the Atlantic on North American (NA) seasonal prediction skill and predictability is examined. Basic material is collected from the literature, a review of seasonal forecast procedures in Canada and the United States, and some fresh calculations using the NCEP–NCAR reanalysis data. The general impression is one of low predictability (due to the Atlantic) for seasonal mean surface temperature and precipitation over NA. Predictability may be slightly better in the Caribbean and the (sub)tropical Americas, even for precipitation. The NAO is widely seen as an agent making the Atlantic influence felt in NA. While the NAO is well established in most months, its prediction skill is limited. Year-round evidence for an equatorially displaced version of the NAO (named ED_NAO) carrying a good fraction of the variance is also found. In general the predictability from the Pacific is thought to dominate over that from the Atlantic sector, which explains the minimal number of reported Atmospheric Model Intercomparison Project (AMIP) runs that explore Atlantic-only impacts. Caveats are noted as to the question of the influence of a single predictor in a nonlinear environment with many predictors. Skill of a new one-tier global coupled atmosphere–ocean model system at NCEP is reviewed; limited skill is found in midlatitudes and there is modest predictability to look forward to. There are several signs of enthusiasm in the community about using “trends” (low-frequency variations): (a) seasonal forecast tools include persistence of last 10 years’ averaged anomaly (relative to the official 30-yr climatology), (b) hurricane forecasts are based largely on recognizing a global multidecadal mode (which is similar to an Atlantic trend mode in SST), and (c) two recent papers, one empirical and one modeling, giving equal roles to the (North) Pacific and Atlantic in “explaining” variations in drought frequency over NA on a 20 yr or longer time scale during the twentieth century.


2005 ◽  
Vol 18 (20) ◽  
pp. 4168-4184 ◽  
Author(s):  
Gregory R. Foltz ◽  
Michael J. McPhaden

Abstract Recent observations have shown evidence of intraseasonal oscillations (with periods of approximately 1–2 months) in the northern and southern tropical Atlantic trade winds. In this paper, the oceanic response to the observed intraseasonal wind variability is addressed through an analysis of the surface mixed layer heat balance, focusing on three locations in the northwestern tropical Atlantic where in situ measurements from moored buoys are available (14.5°N, 51°W; 15°N, 38°W; and 18°N, 34°W). It is found that local heat storage at all three locations is balanced primarily by wind-induced latent heat loss, which is the same mechanism that is believed to play a dominant role on interannual and decadal time scales in the region. It is also found that the intraseasonal wind speed oscillations are linked to changes in surface wind convergence and convection over the western equatorial Atlantic warm pool. These atmospheric circulation anomalies and wind-induced SST anomalies potentially feed back on one another to affect longer time-scale variability in the region.


2021 ◽  
Author(s):  
Andrea Molod ◽  

<p>The Global Modeling and Assimilation Office (GMAO) is about to release a new version of the Goddard Earth Observing System (GEOS) Subseasonal to Seasonal prediction (S2S) system, GEOS‐S2S‐3, that represents an improvement in performance and infrastructure over the  previous system, GEOS-S2S-2. The system will be described briefly, highlighting some features unique to GEOS-S2S, such as the coupled interactive aerosol model and ensemble  perturbation strategy and size. Results are presented from forecasts and from climate  equillibrium simulations. GEOS-S2S-3 will be used to produce a long term weakly coupled reanalysis called MERRA-2 Ocean.</p><p>The climate or equillibrium state of the atmosphere and ocean shows a reduction in systematic error relative to GEOS‐S2S‐2, attributed in part to an increase in ocean resolution and to the upgrade in the glacier runoff scheme.  The forecast skill shows improved prediction  of the North Atlantic Oscillation, attributed to the increase in forecast ensemble members.  </p><p>With the release of GEOS-S2S-3 and MERRA-2 Ocean, GMAO will continue its tradition of maintaining a state‐of‐the‐art seasonal prediction system for use in evaluating the impact on seasonal and decadal forecasts of assimilating newly available satellite observations, as well as evaluating additional sources of predictability in the Earth system through the expanded coupling of the Earth system model and assimilation components.</p>


2019 ◽  
Vol 34 (1) ◽  
pp. 31-59 ◽  
Author(s):  
Ray Bell ◽  
Ben Kirtman

Abstract This study assesses the skill of multimodel forecasts of 10-m wind speed, significant wave height, and mean wave period in the North Atlantic for the winter months. The 10-m winds from four North American multimodel ensemble models and three European Multimodel Seasonal-to-Interannual Prediction project (EUROSIP) models are used to force WAVEWATCH III experiments. Ten ensembles are used for each model. All three variables can be predicted using December initial conditions. The spatial maps of rank probability skill score are explained by the impact of the North Atlantic Oscillation (NAO) on the large-scale wind–wave relationship. Two winter case studies are investigated to understand the relationship between large-scale environmental conditions such as sea surface temperature, geopotential height at 500 hPa, and zonal wind at 200 hPa to the NAO and the wind–wave climate. The very strong negative NAO in 2008/09 was not well forecast by any of the ensembles while most models correctly predicted the sign of the event. This led to a poor forecast of the surface wind and waves. A Monte Carlo model combination analysis is applied to understand how many models are needed for a skillful multimodel forecast. While the grand multimodel ensemble provides robust skill, in some cases skill improves once some models are not included.


2019 ◽  
Vol 32 (13) ◽  
pp. 3899-3915 ◽  
Author(s):  
Ingo Richter ◽  
Takeshi Doi

Abstract The influence of sea surface temperature (SST) on interannual surface wind variability in the tropical Atlantic and Pacific is estimated using sensitivity experiments with the SINTEX-F GCM and the ensemble spread in a nine-member control simulation. Two additional estimates are derived for both SINTEX-F and the ERA-Interim reanalysis using regression analysis and singular value decomposition. All methods yield quite consistent estimates of the fraction of surface wind variability that is determined by SST and therefore potentially predictable. In the equatorial Atlantic, analysis suggests that for the period 1982–2014 approximately 2/3 of surface zonal wind variability in boreal spring and early summer is potentially predictable, while 1/3 is due to noise. Of the predictable component, up to about 35% may be driven from outside the tropical Atlantic, suggesting an important role for remote forcing and a diminished one for local feedbacks. In the northern tropical Atlantic, only 30% of boreal winter variability is predictable, most of which is forced from the Pacific. This suggests a minor role for local coupled air–sea feedbacks. For the equatorial Pacific, the results suggest high predictability throughout the year, most of which is due to local SST, with the tropical Atlantic only playing a minor role in boreal summer. In the tropical Atlantic, atmospheric internal variability is strongly dependent on the presence of deep convection, which, in turn, is related to mean SST. A similar, but weaker, state dependence of internal variability is evident in the tropical Pacific.


Sign in / Sign up

Export Citation Format

Share Document