scholarly journals The Corresponding Tropospheric Environments during Downward-Extending and Nondownward-Extending Events of Stratospheric Northern Annular Mode Anomalies

2019 ◽  
Vol 32 (6) ◽  
pp. 1857-1873 ◽  
Author(s):  
Ruhua Zhang ◽  
Wenshou Tian ◽  
Jiankai Zhang ◽  
Jinlong Huang ◽  
Fei Xie ◽  
...  

Abstract Using the NCEP–NCAR reanalysis dataset, this study classifies stratospheric northern annular mode (NAM) anomalies during the negative or positive phase into two categories—anomalies extending into the troposphere [trop event (TE); referred to as negative or positive TEs] and those not extending into the troposphere [nontrop event (NTE); referred to as negative or positive NTEs], and the corresponding tropospheric environments during the TEs and NTEs are identified. Compared with that for the negative NTEs, the upward wave fluxes entering the stratosphere are stronger and more persistent during the negative TEs. Furthermore, the stronger and more persistent upward wave fluxes during the negative TEs are due to more favorable conditions for upward wave propagation, which is manifested by fewer occurrences of negative refractive index squared in the mid- to high-latitude troposphere and stronger wave intensity in the mid- to high-latitude troposphere. However, the tropospheric wave intensity plays a more important role than the tropospheric conditions of planetary wave propagation in modulating the upward wave fluxes into the stratosphere. Stronger and more persistent upward wave fluxes in the negative TEs, particularly wave-1 fluxes, are closely related to the negative geopotential height anomalies over the North Pacific and positive geopotential height anomalies over the Euro-Atlantic sectors. These negative (positive) geopotential height anomalies over the North Pacific (Euro-Atlantic) are related to the positive (negative) diabatic heating anomalies and the decreased (increased) blocking activities in the mid- to high latitudes. The subtropical diabatic heating could also impact the strength of the mid- to high-latitude geopotential height anomalies through modulating horizontal wave fluxes. For positive NAM events, the results are roughly similar to those for negative NAM events, but with opposite signal.

2015 ◽  
Vol 72 (12) ◽  
pp. 4569-4590 ◽  
Author(s):  
Gwendal Rivière ◽  
Marie Drouard

Abstract Rapid onsets of positive and negative tropospheric northern annular mode (NAM) events during boreal winters are studied using ERA-Interim datasets. The NAM anomalies first appear in the North Pacific from low-frequency Rossby wave propagation initiated by anomalous convection in the western tropical Pacific around 2 weeks before the peak of the events. For negative NAM, the enhanced convection leads to a zonal acceleration of the Pacific jet, while for positive NAM, the reduced convection leads to a poleward-deviated jet in its exit region. The North Atlantic anomalies, which correspond to North Atlantic Oscillation (NAO) anomalies, are formed in close connection with the North Pacific anomalies via downstream propagation of low-frequency planetary-scale and high-frequency synoptic waves, the latter playing a major role during the last onset week. Prior to positive NAM, the generation of synoptic waves in the North Pacific and their downstream propagation is strong. The poleward-deviated Pacific jet favors a southeastward propagation of the waves across North America and anticyclonic breaking in the North Atlantic. The associated strong poleward eddy momentum fluxes push the Atlantic jet poleward and form the positive NAO phase. Conversely, prior to negative NAM, synoptic wave propagation across North America is significantly reduced and more zonal because of the more zonally oriented Pacific jet. This, together with a strong eddy generation in the North Atlantic, leads to equatorward eddy momentum fluxes, cyclonic wave breaking, and the formation of the negative NAO phase. Even though the stratosphere may play a role in some individual cases, it is not the main driver of the composited tropospheric NAM events.


2009 ◽  
Vol 137 (11) ◽  
pp. 3771-3785 ◽  
Author(s):  
Yafei Wang ◽  
Anthony R. Lupo

Abstract Using data for the month of June from 1951 through 2000, this study examined the air–sea interactions over the North Pacific after El Niño matured during the preceding fall season. The principal findings of this work are the following: 1) a coherent region near the international date line (IDL) in the extratropical North Pacific revealed an area of significant negative correlations (SNCs) between the preceding November sea surface temperature (SST) in the Niño-3 region and the June SST in the North Pacific. Also, two indexes of the June Okhotsk high show a significant positive correlation with the November SST in the Niño-3 region during the 1963–2000 period. 2) The strong southeastward wave flux from the upstream area of the Okhotsk Sea over much of the North Pacific in the midlatitudes is associated with a strong preceding El Niño event, the development of the Okhotsk high, and a negative 500-hPa geopotential height/SST anomaly around the coherent region. The stationary wave propagation plays a major part in maintaining the low SSTs in the coherent region and suppressing the northward progress of the subtropical high. This process partially bridges the connection between the central equatorial Pacific warming (CEPW) and the East Asian summer monsoon. 3) A wave train–like anomaly in the SST (tilted northwest–southeast) was established and maintained in the North Pacific during the summer of 1998. This coincided with the direction of the atmospheric Rossby wave propagation as the strong southeastward wave flux was scattered over the midlatitude North Pacific. This event provides solid evidence that Rossby wave propagation plays an important role in forming an oceanic temperature wave train in the extratropical Pacific through the barotropic process.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 670 ◽  
Author(s):  
Kequan Zhang ◽  
Tao Wang ◽  
Mian Xu ◽  
Jiankai Zhang

The effects of wintertime stratospheric polar vortex variation on the climate over the North Pacific Ocean during late winter and spring are analyzed using the National Centers for Environmental Predictions, version 2 (NCEP2) reanalysis dataset. The analysis revealed that, during weak polar vortex (WPV) events, there are noticeably lower geopotential height anomalies over the Bering Sea and greater height anomalies over the central part of the North Pacific Ocean than during strong polar vortex (SPV) events. The formation of the dipolar structure of the geopotential height anomalies is due to a weakened polar jet and a strengthened mid-latitude jet in the troposphere via geostrophic equilibrium. The mechanisms responsible for the changes in the tropospheric jet over the North Pacific Ocean are summarized as follows: when the stratospheric polar westerly is decelerated, the high-latitude eastward waves slow down, and the enhanced equatorward propagation of the eddy momentum flux throughout the troposphere at 60° N. Consequently, the eddy-driven jet over the North Pacific Ocean also shows a southward displacement, leading to a weaker polar jet but a stronger mid-latitude westerly compared with those during the SPV events. Furthermore, anomalous anti-cyclonic flows associated with the higher pressure over the North Pacific Ocean during WPV events induce a warming sea surface temperature (SST) over the western and central parts of the North Pacific Ocean and a cooling SST over the Bering Sea and along the west coast of North America. This SST pattern can last until May, which favors the persistence of the anti-cyclonic flows over the North Pacific Ocean during WPV events. A well-resolved stratosphere and coupled atmosphere-ocean model (CMCC-CMS) can basically reproduce the impacts of stratospheric polar vortex variations on the North Pacific climate as seen in NCEP2 data, although the simulated dipole of geopotential height anomalies is shifted more southward.


2013 ◽  
Vol 26 (20) ◽  
pp. 8139-8153 ◽  
Author(s):  
Ming-Ying Lee ◽  
Huang-Hsiung Hsu

Abstract A multidecadal geopotential height pattern in the upper troposphere of the extratropical Northern Hemisphere (NH) is identified in this study. This pattern is characterized by the nearly zonal symmetry of geopotential height and temperature between 35° and 65°N and the equivalent barotropic vertical structure with the largest amplitude in the upper troposphere. This pattern is named the Eurasian–Pacific multidecadal oscillation (EAPMO) to describe its multidecadal time scale and the largest amplitudes over Eurasia and the North Pacific. Although nearly extending over the entire extratropics, the EAPMO exhibits larger amplitudes over western Europe, East Asia, and the North Pacific with a zonal scale equivalent to zonal wavenumbers 4 and 5. The zonally asymmetric perturbation tends to amplify over the major mountain ranges in the region, suggesting a significant topographic influence. The EAPMO has fluctuated concurrently with the Atlantic multidecadal oscillation (AMO) at least since the beginning of the twentieth century. The numerical simulation results suggest that the EAPMO could be induced by the AMO-like sea surface temperature anomaly and strengthened regionally by topography, especially over the Asian highland region, although the amplitude was undersimulated. This study found that the multidecadal variability of the upper-tropospheric geopotential height in the extratropical NH is much more complicated than in the tropics and the Southern Hemisphere (SH). It takes both first (warming trend) and second (multidecadal) EOFs to explain the multidecadal variability in the extratropical NH, while only the first EOF, which exhibited a warming trend, is sufficient for the tropics and SH.


2013 ◽  
Vol 28 (6) ◽  
pp. 1304-1321 ◽  
Author(s):  
Seung-Eon Lee ◽  
Kyong-Hwan Seo

Abstract Forecasting year-to-year variations in East Asian summer monsoon (EASM) precipitation is one of the most challenging tasks in climate prediction because the predictors are not sufficiently well known and the forecast skill of the numerical models is poor. In this paper, a statistical forecast model for changma (the Korean portion of the EASM system) precipitation is proposed that was constructed with three physically based predictors. A forward-stepwise regression was used to select the predictors that included sea surface temperature (SST) anomalies over the North Pacific, the North Atlantic, and the tropical Pacific Ocean. Seasonal predictions with this model showed high forecasting capabilities that had a Gerrity skill score of ~0.82. The dynamical processes associated with the predictors were examined prior to their use in the prediction scheme. All predictors tended to induce an anticyclonic anomaly to the east or southeast of Japan, which was responsible for transporting a large amount of moisture to the southern Korean Peninsula. The predictor in the North Pacific formed an SST front to the east of Japan during the summertime, which maintained a lower-tropospheric baroclinicity. The North Atlantic SST anomaly induced downstream wave propagation in the upper troposphere, developing anticyclonic activity east of Japan. Forcing from the tropical Pacific SST anomaly triggered a cyclonic anomaly over the South China Sea, which was maintained by atmosphere–ocean interactions and induced an anticyclonic anomaly via northward Rossby wave propagation. Overall, the model used for forecasting changma precipitation performed well (R = 0.85) and correctly predicted information for 16 out of 19 yr of observational data.


2019 ◽  
Vol 148 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Rebecca L. Miller ◽  
Gary M. Lackmann ◽  
Walter A. Robinson

Abstract Persistent weather regimes characterized by anomalous temperature or precipitation are often associated with persistent anomalies (PAs) in the tropospheric geopotential height field. To identify PAs throughout the annual cycle, an earlier definition is modified to apply a seasonally varying magnitude threshold, based on a smoothed, daily varying climatological average of daily 500-hPa geopotential height variability. The modified index can be applied to a wide variety of analysis, reanalysis, or model-forecast gridded data. Here, the modified PA index is used to identify positive and negative Northern Hemisphere PAs in all seasons and to compute trends in PA frequency, strength, location, and duration, in the ECMWF ERA-Interim reanalysis dataset (1979–2016). Height data are detrended and anomalies are weighted with an inverse sine-of-latitude function. In addition to maxima in PA frequency identified previously (North Pacific, North Atlantic, and Russia), an additional summertime maximum appears in the Arctic; this feature has not been analyzed extensively. A composite of summertime positive Arctic PA events reveals an equivalent barotropic structure, similar to that documented for midlatitude PAs. Arctic PA frequency is greatest in summer; it exhibits no trend in frequency over the 38-yr ERA-Interim analysis period. In fact, no discernable trends in PA frequency, strength, or duration are evident in the analysis period for the primary PA regions, although there is a suggestion of a northward shift in positive PA activity in the North Pacific.


2017 ◽  
Vol 30 (16) ◽  
pp. 6465-6479 ◽  
Author(s):  
Chao He ◽  
Bo Wu ◽  
Liwei Zou ◽  
Tianjun Zhou

Subtropical anticyclones dominate the subtropical ocean basins in summer. Using the multimodel output from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the future changes of the subtropical anticyclones as a response to global warming are investigated, based on the changes in subsidence, low-level divergence, and rotational wind. The subtropical anticyclones over the North Pacific, South Atlantic, and south Indian Ocean are projected to become weaker, whereas the North Atlantic subtropical anticyclone (NASA) intensifies, and the South Pacific subtropical anticyclone (SPSA) shows uncertainty but is likely to intensify. Diagnostic analyses and idealized simulations suggest that the projected changes in the subtropical anticyclones are well explained by the combined effect of increased tropospheric static stability and changes in diabatic heating. Increased static stability acts to reduce the intensity of all the subtropical anticyclones, through the positive mean advection of stratification change (MASC) over the subsidence regions of the subtropical anticyclones. The pattern of change in diabatic heating is dominated by latent heating associated with changes in precipitation, which is enhanced over the western North Pacific under the “richest get richer” mechanism but is reduced over subtropical North Atlantic and South Pacific due to a local minimum of SST warming amplitude. The change in the diabatic heating pattern substantially enhances the subtropical anticyclones over the North Atlantic and South Pacific but weakens the North Pacific subtropical anticyclone.


2005 ◽  
Vol 18 (6) ◽  
pp. 876-885 ◽  
Author(s):  
Soon-Il An ◽  
Bin Wang

Abstract Conditional maximum covariance analysis is applied to investigate the coherent patterns between the tropical and North Pacific SST and the North Pacific 500-hPa geopotential height anomalies. Two leading modes are identified. One is an intrinsic midlatitude mode, the North Pacific (NP) mode, for which SST anomalies are mainly confined to the extratropical North Pacific. The other is a tropical ocean–atmosphere coupled mode, the ENSO mode, in which an ENSO-like SST pattern dominates the Tropics but extratropical SST anomalies are relatively weak. The NP and ENSO modes exhibit distinct spatial and temporal characteristics. For the NP mode, atmospheric variation leads to changes in SST, while for the ENSO mode the opposite is true. The NP mode displays a persistence barrier during August–September whereas the ENSO mode has a March–April persistence barrier. The upper-tropospheric jet stream associated with the NP and ENSO mode intensifies, respectively, over the central North Pacific and the subtropical northeastern Pacific; consequently, the transient activities maximize in their corresponding jet exit regions. The expansion coefficients of the 500-hPa geopotential height associated with the two modes appear to be significantly correlated. However, by reducing the high-frequency part (e.g., shorter than the interannual time scale) in expansion coefficients, the correlation becomes insignificant, indicating that the significant correlation results from high-frequency signals that are unrelated to the corresponding SST variation. The results presented here suggest that the intrinsic coupled mode in the midlatitude North Pacific may be distinguished from the forced mode by remote ENSO, especially on the interannual time scale.


Sign in / Sign up

Export Citation Format

Share Document